Data mining (DM) and machine learning (ML) applications in medical diagnostic systems are budding. Data privacy is essential in these systems as healthcare data are highly sensitive. The proposed work first discusses various privacy and security challenges in these systems. To address these next, we discuss different privacy-preserving (PP) computation techniques in the context of DM and ML for secure data evaluation and processing. The state-of-the-art applications of these systems in healthcare are analyzed at various stages such as data collection, data publication, data distribution, and output phases regarding PPDM and input, model, training, and output phases in the context of PPML. Furthermore, PP federated learning is also discussed. Finally, we present open challenges in these systems and future research directions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.