Retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), including melanoma differentiation-associated gene 5 (MDA5) and RIG-I, are crucial for host recognition of non-self RNAs, especially viral RNA. Thus, the expression and activation of RLRs play fundamental roles in eliminating the invading RNA viruses and maintaining immune homeostasis. However, how RLR expression is tightly regulated remains to be further investigated. In this study, we identified a major histocompatibility complex (MHC)-encoded gene, tripartite interaction motif 40 (TRIM40), as a suppressor of RLR signaling by directly targeting MDA5 and RIG-I. TRIM40 binds to MDA5 and RIG-I and promotes their K27- and K48-linked polyubiquitination via its E3 ligase activity, leading to their proteasomal degradation. TRIM40 deficiency enhances RLR-triggered signaling. Consequently, TRIM40 deficiency greatly enhances antiviral immune responses and decreases viral replication in vivo. Thus, we demonstrate that TRIM40 limits RLR-triggered innate activation, suggesting TRIM40 as a potential therapeutic target for the control of viral infection.
TBK1 is a critical kinase required for the induction of type I IFNs and subsequent cellular antiviral responses. Yu et al. show that USP1–UAF1 deubiquitinase complex removes K48-linked polyubiquitination of TBK1, stabilizes its expression, and thus enhances antiviral responses.
NOD-like receptor protein 3 (NLRP3) detects microbial infections or endogenous danger signals and activates the NLRP3 inflammasome, which has important functions in host defense and contributes to the pathogenesis of inflammatory diseases, and thereby needs to be tightly controlled. Deubiquitination of NLRP3 is considered a key step in NLRP3 inflammasome activation. However, the mechanisms by which deubiquitination controls NLRP3 inflammasome activation are unclear. Here, we show that the UAF1/USP1 deubiquitinase complex selectively removes K48-linked polyubiquitination of NLRP3 and suppresses its ubiquitination-mediated degradation, enhancing cellular NLRP3 levels, which are indispensable for subsequent NLRP3 inflammasome assembly and activation. In addition, the UAF1/USP12 and UAF1/USP46 complexes promote NF-κB activation, enhance the transcription of NLRP3 and proinflammatory cytokines (including pro-IL-1β, TNF, and IL-6) by inhibiting ubiquitination-mediated degradation of p65. Consequently, Uaf1 deficiency attenuates NLRP3 inflammasome activation and IL-1β secretion both in vitro and in vivo. Our study reveals that the UAF1 deubiquitinase complexes enhance NLRP3 and pro-IL-1β expression by targeting NLRP3 and p65 and licensing NLRP3 inflammasome activation.
The cellular NLRP3 protein level is crucial for assembly and activation of the NLRP3 inflammasome. Various posttranslational modifications (PTMs), including phosphorylation and ubiquitination, control NLRP3 protein degradation and inflammasome activation; however, the function of small ubiquitin-like modifier (SUMO) modification (called SUMOylation) in controlling NLRP3 stability and subsequent inflammasome activation is unclear. Here, we show that the E3 SUMO ligase tripartite motif-containing protein 28 (TRIM28) is an enhancer of NLRP3 inflammasome activation by facilitating NLRP3 expression. TRIM28 binds NLRP3, promotes SUMO1, SUMO2 and SUMO3 modification of NLRP3, and thereby inhibits NLRP3 ubiquitination and proteasomal degradation. Concordantly, Trim28 deficiency attenuates NLRP3 inflammasome activation both in vitro and in vivo. These data identify a mechanism by which SUMOylation controls the cellular NLRP3 level and inflammasome activation, and reveal correlations and interactions of NLRP3 SUMOylation and ubiquitination during inflammasome activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.