A reduction in track width of ultra-high density magnetic recording such as bit-patterned media recording (BPMR) results in an increase in areal density. However, the unfortunate appearance of extreme inter-symbol interference (ISI) and inter-track interference (ITI) can severely deteriorate the system performance. To deal with these problems, we propose to use a single-reader/two-track reading (SRTR) technique, where a single reader was employed to read two parallel-track at once and the bit islands were arranged in a staggered manner. Then, a received readback signal was sampled at an over-sampling rate, where an obtained data sequence can be operated using only a one-dimensional equalization and detection scheme. Moreover, we also present the simple constrained coding schemes consisting of the rate-3/5 and -4/6 constrained codes, where both are properly designed for an SRTR BPMR system by avoiding all data patterns that are more susceptible to ISI and ITI effects. Simulation results show that the severe ISI and ITI effects can be mitigated through the use of our proposed coding schemes. Consequently, the proposed systems are superior to the conventional system (without our constrained codes) at a same user density of 3.0 Tb/in2.
One of the key problems facing the designer of data storage devices is how to handle the exponential rise in demand for information storage. To enhance the storage capacity of bit-patterned magnetic recording (BPMR) that stores one data bit in a single magnetic island, the spacing among bit islands, i.e., bit period and track pitch, must be reduced. However, the interference effects from both the across- and along-track directions are unavoidably increased, which leads to performance degradation. This paper proposes to utilize the proper spacing arrangement of magnetic islands for a single-reader two-track reading scheme to increase the staggered BPMR system’s storage capacity. We also study how the system performs for different distances between magnetic islands when track misregistration and media noise are present. Simulation results reveal that the staggered BPMR system with an appropriate magnetic island spacing can provide better performance than the traditional island placement, where the spacing between bit islands in across- and along-track directions is same.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.