Pipelines are widely used for the transportation of hydrocarbon fluids over millions of miles all over the world. The structures of the pipelines are designed to withstand several environmental loading conditions to ensure safe and reliable distribution from point of production to the shore or distribution depot. However, leaks in pipeline networks are one of the major causes of innumerable losses in pipeline operators and nature. Incidents of pipeline failure can result in serious ecological disasters, human casualties and financial loss. In order to avoid such menace and maintain safe and reliable pipeline infrastructure, substantial research efforts have been devoted to implementing pipeline leak detection and localisation using different approaches. This paper discusses pipeline leakage detection technologies and summarises the state-of-the-art achievements. Different leakage detection and localisation in pipeline systems are reviewed and their strengths and weaknesses are highlighted. Comparative performance analysis is performed to provide a guide in determining which leak detection method is appropriate for particular operating settings. In addition, research gaps and open issues for development of reliable pipeline leakage detection systems are discussed.
Hyperparameter tuning is a critical function necessary for the effective deployment of most machine learning (ML) algorithms. It is used to find the optimal hyperparameter settings of an ML algorithm in order to improve its overall output performance. To this effect, several optimization strategies have been studied for fine-tuning the hyperparameters of many ML algorithms, especially in the absence of model-specific information. However, because most ML training procedures need a significant amount of computational time and memory, it is frequently necessary to build an optimization technique that converges within a small number of fitness evaluations. As a result, a simple deterministic selection genetic algorithm (SDSGA) is proposed in this article. The SDSGA was realized by ensuring that both chromosomes and their accompanying fitness values in the original genetic algorithm are selected in an elitist-like way. We assessed the SDSGA over a variety of mathematical test functions. It was then used to optimize the hyperparameters of two well-known machine learning models, namely, the convolutional neural network (CNN) and the random forest (RF) algorithm, with application on the MNIST and UCI classification datasets. The SDSGA’s efficiency was compared to that of the Bayesian Optimization (BO) and three other popular metaheuristic optimization algorithms (MOAs), namely, the genetic algorithm (GA), particle swarm optimization (PSO) and biogeography-based optimization (BBO) algorithms. The results obtained reveal that the SDSGA performed better than the other MOAs in solving 11 of the 17 known benchmark functions considered in our study. While optimizing the hyperparameters of the two ML models, it performed marginally better in terms of accuracy than the other methods while taking less time to compute.
The function of the window is to provide comfort for the householders by regulating the indoor environment. However, most of the residence windows are still controlled manually. Although, a quite number of automated windows based on the Internet of Things (IoT) has been proposed in the literature, yet a smart windows control with multi-objectives functions related to the environmental factors remain open gap.This paper aims to contribute to this area by developing a cyberphysical system (CPS) for smart room and windows automation control (SRWAC) using set of rules generated from the Petri Net simulator for determining the system response to the inputs data sensed from the indoor and outdoor sensing units (temperature, dust, rain, and carbon monoxide sensors) in coding Atmega 328 controller. We also simulate the window controller using Field Programmable Gate Array (FPGA) in Xilinx ISE. The results of the system tested show that automated response of the indoor and outdoor conditions can be achieved spontaneously.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.