In this paper, we first discussed multiplicative metric mapping by giving some topological properties of the relevant multiplicative metric space. As an interesting result of our discussions, we observed that the set of positive real numbers is a complete multiplicative metric space with respect to the multiplicative absolute value function. Furthermore, we introduced concept of multiplicative contraction mapping and proved some fixed point theorems of such mappings on complete multiplicative metric spaces.
In this study we first define the concept of Nadler type contraction in the setting of H-cone b-metric space with respect to cone b-metric spaces over Banach algebras. Next we prove the Banach contraction principle for such contractions by means of the notion of spectral radius and a solid cone in underlying Banach algebra. Finally we observe that the main result achieved in this work extends and generalizes the well known results associated with contractions of Nadler type.
In this work, we first introduce almost contraction mappings for a pair of two mappings in cone metric spaces over Banach algebras (CMSBA). Then, we observe that the class of such mappings in this setting contains those of many well known mappings. Finally, we prove some fixed point theorems, and obtain $(S,T)$-stability results of Jungck iterations for some mappings in CMSBA.
Noncommutative derivative operators acting on the quantum 3D space in the sense of Manin are introduced. Furthermore, the quantum 3D space is extended by the series expansion of the logarithm of the grouplike generator in the quantum 3D space. We give its differential calculus and the corresponding Weyl algebra. We also obtain algebra of Cartan-Maurer forms on this extension and the corresponding Lie algebra of vector fields. All noncommutative results are found to reduce to those of the standard commutative algebra when the deformation parameter of the quantum 3D space is set to one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.