The numerous industrial and engineering applications of Casson nanofluid is due to the superiority of its thermophysical properties. Tomatoes paste, engine oil, soup etc., are examples of Casson fluid and when nanometer-sized particles are suspended in such Casson fluid, it becomes Casson nanofluid. This paper considers a natural convective magnetohydrodynamics flow of Cu-engine oil nanofluid across a convectively heated vertical plate. The effects of self-heating of the fluid (measured by the Eckert number), internal conductive resistance to external convective resistance (measured by the Biot number), magnetic field strength, volume fraction of the nanoparticles on the temperature and velocity of mass and heat transfer of Casson nanofluid is analysed. An appropriate model governing the flow of Casson nanofluid is formulated as a system of nonlinear partial differential equations. The natural convection boundary condition is included. To solve the problem, an appropriate similarity transformation is used to reformulate the system as a system of nonlinear ordinary differential equations. The shooting technique is used to convert the boundary problem to initial value problems before Runge-Kutta method, with the Gills constants, is used to solve the reformulated problem. The results are depicted as graphs. Flow velocity is found to increase as the base fluid becomes more Casson and as nanoparticle volume fraction increases. It is also found that increasing Eckert number, Biot number and magnetic field strength causes an increase in the flow temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.