Electrochemical transformation of CO2 into functional materials or fuels (i.e., carbon, CO) in high temperature molten salts has been demonstrated as a promising way of carbon capture, utilisation and storage (CCUS) in recent years. In a view of continuous operation, the electrolysis process should match very well with the CO2 absorption kinetics. At the same time, in consideration of the energy efficiency, a molten salt electrochemical cell running at lower temperature is more beneficial to a process powered by the fluctuating renewable electricity from solar/wind farms. Ternary carbonates (Li : Na : K = 43.5 : 31.5 : 25.0) and binary chlorides (Li : K = 58.5 : 41.5), two typical kinds of eutectic melt with low melting points and a wide electrochemical potential window, could be the ideal supporting electrolyte for the molten salt CO2 capture and electro-transformation (MSCC-ET) process. In this work, the CO2 absorption behaviour in Li2O/CaO containing carbonates and chlorides were investigated on a home-made gas absorption testing system. The electrode processes as well as the morphology and properties of carbon obtained in different salts are compared to each other. It was found that the composition of molten salts significantly affects the absorption of CO2, electrode processes and performance of the product. Furthermore, the relationship between the absorption and electro-transformation kinetics are discussed based on the findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.