Optical coherence tomography (OCT) is a non-invasive technique with a large array of applications in clinical imaging and biological tissue visualization. However, the presence of speckle noise affects the analysis of OCT images and their diagnostic utility. In this article, we introduce a new OCT denoising algorithm. The proposed method is founded on a numerical optimization framework based on maximum-a-posteriori estimate of the noise-free OCT image. It combines a novel speckle noise model, derived from local statistics of empirical spectral domain OCT (SD-OCT) data, with a Huber variant of total variation regularization for edge preservation. The proposed approach exhibits satisfying results in terms of speckle noise reduction as well as edge preservation, at reduced computational cost.
We present an algorithm for extracting and vectorizing objects in images with polygons. Departing from a polygonal partition that oversegments an image into convex cells, the algorithm refines the geometry of the partition while labeling its cells by a semantic class. The result is a set of polygons, each capturing an object in the image. The quality of a configuration is measured by an energy that accounts for both the fidelity to input data and the complexity of the output polygons. To efficiently explore the configuration space, we perform splitting and merging operations in tandem on the cells of the polygonal partition. The exploration mechanism is controlled by a priority queue that sorts the operations most likely to decrease the energy. We show the potential of our algorithm on different types of scenes, from organic shapes to man-made objects through floor maps, and demonstrate its efficiency compared to existing vectorization methods.
Current climate model projections do not exhibit a large change in the intensity of extratropical cyclones. However, there are concerns that current models represent moist processes poorly, and this provides motivation for investigating observational evidence for how cyclones behave in warmer climates. In the North Atlantic in particular, recent decades provide a clear contrast between warm and cold climates due to Atlantic Multidecadal Variability. In this paper we investigate these periods as analogues which may provide a guide to future cyclone behavior. While temperature and moisture rise in recent warm periods as in the projections, differences in energetics and temperature gradients imply that these periods are only partial analogues. The main result from current reanalyses is that while increased cyclone-associated precipitation is seen in the recent warm periods, there is no robust evidence of an increase in cyclone intensity by other measures, such as maximum wind speed or vorticity. A set of low-and high-resolution model simulations are also studied, suggesting that changes in cyclone intensity may be different in higher-resolution reanalyses.
Low-light image enhancement exhibits an ill-posed nature, as a given image may have many enhanced versions, yet recent studies focus on building a deterministic mapping from input to an enhanced version. In contrast, we propose a lightweight one-path conditional generative adversarial network (cGAN) to learn a one-to-many relation from low-light to normal-light image space, given only sets of low- and normal-light training images without any correspondence. By formulating this ill-posed problem as a modulation code learning task, our network learns to generate a collection of enhanced images from a given input conditioned on various reference images. Therefore our inference model easily adapts to various user preferences, provided with a few favorable photos from each user. Our model achieves competitive visual and quantitative results on par with fully supervised methods on both noisy and clean datasets, while being 6 to 10 times lighter than state-of-the-art generative adversarial networks (GANs) approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.