The emergence of a variety of coronaviruses (CoVs) in the last decades has posed huge threats to human health. Especially, the ongoing pandemic of coronavirus disease 2019 (COVID‐19) caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) has led to more than 70 million infections and over 1.6 million of deaths worldwide in the past few months. None of the efficacious antiviral agents against human CoVs have been approved yet. 3C‐like protease (3CL pro ) is an attractive target for antiviral intervention due to its essential role in processing polyproteins translated from viral RNA, and its conserved structural feature and substrate specificity among CoVs in spite of the sequence variation. This review focuses on all available crystal structures of 12 CoV 3CL pro s and their inhibitors, and intends to provide a comprehensive understanding of this protease from multiple aspects including its structural features, substrate specificity, inhibitor binding modes, and more importantly, to recapitulate the similarity and diversity among different CoV 3CL pro s and the structure–activity relationship of various types of inhibitors. Such an attempt could gain a deep insight into the inhibition mechanisms and drive future structure‐based drug discovery targeting 3CL pro s.
The human formyl peptide receptor 2 (FPR2) plays a crucial role in host defense and inflammation, and has been considered as a drug target for chronic inflammatory diseases. A variety of peptides with different structures and origins have been characterized as FPR2 ligands. However, the ligand-binding modes of FPR2 remain elusive, thereby limiting the development of potential drugs. Here we report the crystal structure of FPR2 bound to the potent peptide agonist WKYMVm at 2.8 Å resolution. The structure adopts an active conformation and exhibits a deep ligand-binding pocket. Combined with mutagenesis, ligand binding and signaling studies, key interactions between the agonist and FPR2 that govern ligand recognition and receptor activation are identified. Furthermore, molecular docking and functional assays reveal key factors that may define binding affinity and agonist potency of formyl peptides. These findings deepen our understanding about ligand recognition and selectivity mechanisms of the formyl peptide receptor family.
Cyclic GMP–AMP synthase (cGAS) has been recently uncovered to be a promising therapeutic target for immune-associated diseases. Until now, only a few inhibitors have been identified through high-throughput screening campaigns. Here, we reported the discovery of novel inhibitors for the catalytic domain of human cGAS (h-cGASCD) by virtual screening for the first time. To generate a reliable docking mode, we first obtained a high-resolution crystal structure of h-cGASCD in complex with PF-06928215, a known inhibitor of h-cGAS, followed by molecular dynamics simulations on this complex structure. Four fragment hits were identified by the virtual screening together with a thermal shift assay. The crystal structures of these four compounds in complex with h-cGASCD were subsequently determined, and the binding modes of the compounds were similar to those predicted by molecular docking, supporting the reliability of the docking model. In addition, an enzyme activity assay identified compound 18 (IC50 = 29.88 ± 3.20 μM) from the compounds predicted by the virtual screening. A similarity search of compound 18 followed by a second virtual screening led to the discovery of compounds S2 (IC50 = 13.1 ± 0.09 μM) and S3 (IC50 = 4.9 ± 0.26 μM) as h-cGAS inhibitors with improved potency. Therefore, the present study not only provides the validated hit compounds for further development of h-cGAS inhibitors but also demonstrates a cross-validation study of virtual screening, in vitro experimental assays, and crystal structure determination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.