Continuous monitoring of climate indicators is important for understanding the dynamics and trends of the climate system. Lake ice has been identified as one such indicator, and has been included in the list of Essential Climate Variables (ECVs). Currently there are two main ways to survey lake ice cover and its change over time, in-situ measurements and satellite remote sensing. The challenge with both of them is to ensure sufficient spatial and temporal resolution. Here, we investigate the possibility to monitor lake ice with video streams acquired by publicly available webcams. Main advantages of webcams are their high temporal frequency and dense spatial sampling. By contrast, they have low spectral resolution and limited image quality. Moreover, the uncontrolled radiometry and low, oblique viewpoints result in heavily varying appearance of water, ice and snow. We present a workflow for pixel-wise semantic segmentation of images into these classes, based on state-of-the-art encoder-decoder Convolutional Neural Networks (CNNs). The proposed segmentation pipeline is evaluated on two sequences featuring different ground sampling distances. The experiment suggests that (networks of) webcams have great potential for lake ice monitoring. The overall per-pixel accuracies for both tested data sets exceed 95 %. Furthermore, per-image discrimination between ice-on and ice-off conditions, derived by accumulating per-pixel results, is 100 % correct for our test data, making it possible to precisely recover freezing and thawing dates.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.