Mechanical and magnetic degradation of ferromagnetic films under contact stress was systematically investigated through novel experiments and analytical simulations. Permalloy (Ni80Fe20) film was deposited onto silicon substrate, and two different thicknesses of permalloy film (50 nm for sample A and 300 nm for sample B) were examined in this study. Magnetic properties were obtained from B-H loop tracer hysteresis measurement, while the mechanical properties (i.e., hardness and elastic modulus) were measured using nanoindentation techniques. It was observed that the 50 nm thick permalloy film showed weaker magnetic strength (lower coercivity and saturation magnetic flux values) and lower hardness than the 300 nm thick permalloy film. To apply mechanical contact stress on the permalloy film samples, nanoscratch experiments were performed using ramp and constant loading scratch profiles. Then, the resulting mechanical degradation (surface physical damage) of the two samples was determined from atomic force microscope measurements, and the corresponding magnetic degradation was analyzed using magnetic force microscope measurements. It was found that the magnetic degradation was more sensitive to the applied contact stress than the mechanical degradation. Comparing the two permalloy film samples, it was observed that the 50 nm thick permalloy film showed more magnetic degradation under the same contact stress, which could be attributed to its lower material strength.
Diamond-like carbon (DLC) films are extensively used in various industries due to their superior protective and lubrication properties. However, DLC films including sp 2 and sp 3 carbon bonding are metastable materials, which can be thermally degraded (or graphitized) at elevated temperature. In this study, a novel Raman spectroscopy technique was developed to evaluate the in-situ thermal stability of DLC films. When a laser beam is applied onto a DLC film, the surface temperature can increase depending on the laser power, laser duration time, and surface reflectivity. Based on this laser heating concept, the Raman spectrum data of DLC films (i.e., G peak position and width) were obtained at the controlled Raman laser power, which enabled to determine the critical temperature to initiate the thermal degradation of DLC films. Two different designs of DLC film (i.e., types A and B with different initial sp 2 -to-sp 3 ratio) were prepared and their thermal stability was evaluated using the proposed Raman spectroscopy technique. From the systematic data analysis and comparison, it could be observed that the type-A DLC film showed the significant change of Raman parameters (i.e., G peak position and width) at lower laser power value (=lower temperature) than the type-B DLC film, which indicated that the type-B DLC film had better thermal stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.