BackgroundResistance monitoring is essential in ensuring the success of insecticide based vector control programmes. This study was carried out to assess the susceptibility status of urban populations of Anopheles gambiae to carbamate insecticide being considered for vector control in mosquito populations previously reported to be resistant to DDT and permethrin.MethodsTwo – three day old adult female Anopheles mosquitoes reared from larval collections in 11 study sites from Local Government Areas of Lagos were exposed to test papers impregnated with DDT 4%, deltamethrin 0.05% and propoxur 0.1% insecticides. Additional tests were carried out to determine the susceptibility status of the Anopheles gambiae population to bendiocarb insecticide. Members of the A. gambiae complex, the molecular forms, were identified by PCR assays. The involvement of metabolic enzymes in carbamate resistance was assessed using Piperonyl butoxide (PBO) synergist assays. The presence of kdr-w/e and ace-1R point mutations responsible for DDT-pyrethroid and carbamate resistance mechanisms was also investigated by PCR.ResultsPropoxur resistance was found in 10 out of the 11 study sites. Resistance to three classes of insecticides was observed in five urban localities. Mortality rates in mosquitoes exposed to deltamethrin and propoxur did not show any significant difference (P > 0.05) but was significantly higher (P < 0.05) in populations exposed to DDT. All mosquitoes tested were identified as A. gambiae s.s (M form). The kdr -w point mutation at allelic frequencies between 45%-77% was identified as one of the resistant mechanisms responsible for DDT and pyrethroid resistance. Ace-1R point mutation was absent in the carbamate resistant population. However, the possible involvement of metabolic resistance was confirmed by synergistic assays conducted.ConclusionEvidence of carbamate resistance in A. gambiae populations already harbouring resistance to DDT and permethrin is a clear indication that calls for the implementation of insecticide resistance management strategies to combat the multiple resistance identified.
The observation of limited diversity of malaria parasites may imply that the use of antigenic markers as genotyping tools for distinguishing recrudescence and re-infections with P. falciparum during drug trials is subjective.
BackgroundGenetic diversity studies provide evidence of Plasmodium falciparum differentiation that could affect fitness and adaptation to drugs and target antigens for vaccine development. This study describes the genetic structure of P. falciparum populations in urban and rural sites from southwestern Nigeria.MethodologyTen neutral microsatellite loci were genotyped in 196 P. falciparum infections from three localities: Aramoko-Ekiti, a rural community; Lekki, an urban location and Badagry, a peri-urban border settlement. Analysis was performed on the genetic diversity, linkage disequilibrium, population structure and inter-population differentiation.ResultsAllelic diversity values were similar across all populations, with mean expected heterozygosity (HE) values between 0.65 and 0.79. No matching multilocus haplotypes were found and analysis of multilocus LD showed no significant index of association. Genetic differentiation between populations was low (ΦPT = 0.017).ConclusionThe absence of detectable population structure of P. falciparum in southwestern Nigeria is evident in the lack of significant differentiation between populations separated by about 200 km. This implies that a fairly uniform malaria control strategy may be effective over a wide geographic range in this highly endemic region. However, more wide-scale survey across the country will be required to inform malaria control in this large and densely populated endemic region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.