Mevlânâ Celâleddîn Rumî'nin ahlak öğretisinde mutluluk konusunun ele alındığı bu çalışmada Mevlânâ'nın mutluluk kavramına yüklediği anlamların incelenmesi ve etik değerinin gösterilmesi hedeflenmiştir. Bu nedenle bu çalışmada daha çok literatür taraması ve temel kaynakların incelenmesine dayalı bir yöntem kullanılmıştır. Araştırma sonunda Hz. Mevlânâ'nın geçici bedensel hazlardan ziyade kalıcı ruhî hazlara dayalı dinî-tasavvufi yönü ağır basan bir "manevî mutluluk" anlayışı geliştirdiği görülmüştür. Onun, mutluluğu daha çok insanın Allah ile kurduğu psikolojik bir birlik bilinci içerisinde aradığı ve "gönül huzuru" veya "sükûn hâli" ile ifade ettiği sonucuna ulaşılmıştır.
We introduce the Tensor-Based Multivariate Optimization (TeMPO) framework for use in nonlinear optimization problems commonly encountered in signal processing, machine learning, and artificial intelligence. Within our framework, we model nonlinear relations by a multivariate polynomial that can be represented by low-rank symmetric tensors (multi-indexed arrays), making a compromise between model generality and efficiency of computation. Put the other way around, our approach both breaks the curse of dimensionality in the system parameters and captures the nonlinear relations with a good accuracy. Moreover, by taking advantage of the symmetric CPD format, we develop an efficient second-order Gauss–Newton algorithm for multivariate polynomial optimization. The presented algorithm has a quadratic per-iteration complexity in the number of optimization variables in the worst case scenario, and a linear per-iteration complexity in practice. We demonstrate the efficiency of our algorithm with some illustrative examples, apply it to the blind deconvolution of constant modulus signals, and the classification problem in supervised learning. We show that TeMPO achieves similar or better accuracy than multilayer perceptrons (MLPs), tensor networks with tensor trains (TT) and projected entangled pair states (PEPS) architectures for the classification of the MNIST and Fashion MNIST datasets while at the same time optimizing for fewer parameters and using less memory. Last but not least, our framework can be interpreted as an advancement of higher-order factorization machines: we introduce an efficient second-order algorithm for higher-order factorization machines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.