We examined the effect of dietary Turkish propolis and flavomycin on growth performance, carcass characteristics, internal organ weights and some serum variables in quail (Coturnix coturnix japonica) birds. One hundred and fifty day-old quails were randomly divided into five groups, with ten replicate pens per treatment and three birds per pen. One group received the basal diet (antibiotic-free), the control. The flavomycin at 10 mg/kg diet and propolis at 0.5, 1 and 1.5 g/kg diet were added to the basal diet. Body weight gain, feed consumption and feed efficiency were determinated weekly. Carcass characteristics, internal organ weights and serum variables were determinated at the end of the study (35 day). The results showed that body weight gain, feed efficiency and carcass weight were improved significantly (p<0.01) when compared to control group for birds fed diets containing propolis and flavomycin between 14 to 35 days. The addition of 1 g/kg propolis to the diet resulted in significantly (p<0.01) better-feed efficiency as compared to control and other treatment groups. There were no significant differences in carcass yield, abdominal fat, liver gizzard, proventriculus and intestinal weight and intestinal pH among the groups. In addition, serum ALP, total protein, uric acid, cholesterol and triglyceride were not influenced by the any supplementation. However, birds fed with propolis tended to have higher serum HDL and lower level than birds fed the control diet. In conclusion, supplementation of propolis and flavomycin during the growth period showed similar effects on growth performance in quail. Therefore, it can serve as a natıral substitute for antibiotics in poultry diets.
The aim of this study was to evaluate the ability of AflaDetox (Adiveter, Agro-Reus, Reus, Tarragona, Spain) in counteracting the deleterious effects of aflatoxin B(1) (AFB(1)) in broiler chicks. A total of 120 Ross 308 one-day-old male broiler chicks were assigned to 8 treatments for 42 d. The experiment had a 2 x 4 factorial arrangement of treatments involving 0 and 1 mg of AFB(1)/kg feed and 0, 1, 2, and 5 g of AflaDetox/kg feed. Chicks were fed on the ground during the first 7 d and in cages (3 chicks/cage; 5 cages/treatment) from 7 to 42 d. Growth performance was measured from d 7 to 42 and whole-tract digestibility of gross energy and protein on d 40 to 41. Serum biochemical parameters, organ weights, histopathological examination of liver, and AFB(1) residues in liver and breast muscle tissues were determined on d 42. Aflatoxin B(1) significantly decreased the BW gain, feed intake, and impaired feed conversion rate (P < 0.05). The addition of AflaDetox in the contaminated diets significantly diminished the inhibitory effects of dietary AFB(1) (P < 0.05) on the growth performance with no differences compared to the control diet. Feeding AFB(1) alone decreased serum protein concentration, increased the serum activity of alkaline phosphatase, and caused significant increases in the relative weights of livers. Treatment with AflaDetox significantly alleviated the negative effects of AFB(1) on these parameters (P < 0.05) with no effect on uncontaminated diets. Liver tissue of broilers receiving AFB(1) alone had perilobular inflammation and vacuolar degeneration of hepatocytes as compared with the tissue from the control group (P < 0.05). Residues of AFB(1) were detected in the liver tissues of broilers fed on the AFB(1) diet (0.166 microg/kg). Supplementation of AflaDetox reduced the incidence and severity of the hepatic histopathology changes associated with aflatoxicosis and the amount of AFB(1) residue in liver. In conclusion, our results showed that addition of AflaDetox may reduce the adverse effects produced by the presence of AFB(1) in broiler chickens diets.
Ochratoxin A (OTA) has been shown to be a potent nephrotoxic, hepatotoxic, and teratogenic compound. In farm animals, the intake of feed contaminated with OTA affects animal health and productivity, and may result in the presence of OTA in the animal products. Strategies for the control of OTA in food products require early identification and elimination of contaminated commodities from the food chain. However, current analytical protocols may fail to identify contaminated products, especially in animal feed. The present paper discusses the impact of OTA on human and animal health, with special emphasis on the potential risks of OTA residue in animal products, and control strategies applied in the feed industry.
An experiment was conducted to evaluate the efficacy of a new ochratoxin-binding agent (Ocra-Tox, 5 g/kg of feed) in offsetting the toxic effects of ochratoxin A (OTA, 2 mg/kg of feed) in laying hen diets. Performance, serum biochemistry, OTA residue in the liver and eggs, and egg quality parameters were evaluated. Twenty-eight Hisex Brown laying hens, 47 wk of age, were allocated to 1 of 4 experimental treatments for 3 wk: control, OTA (containing 2 mg of OTA/kg of feed), OcraTox (containing 5 g of OcraTox/kg of feed), and OTA + OcraTox (containing 2 mg of OTA and 5 g of OcraTox/kg of feed). Laying hens fed OcraTox showed results similar to the control hens (P > 0.05). The OTA diet significantly (P < 0.05) reduced daily feed consumption, egg mass production, and serum triglyceride concentrations, and increased the relative liver weight, the serum activity of alkaline phosphatase, and the serum concentration of uric acid as compared with the control diet. Addition of OcraTox to the contaminated diet alleviated (P < 0.05) the negative effects resulting from OTA, reaching values not significantly different from the control diet for most of the parameters except the relative weight of the liver. Birds fed the OTA treatment showed a greater content of OTA in the liver (15.1 microg/kg) than those fed the control diet (<0.05 microg/kg). Supplementing the contaminated diet with OcraTox (OTA + OcraTox) reduced the values to 12.0 microg/kg. Residues of OTA were not detected above our detection limit (0.05 microg/kg) in any of the analyzed eggs. In conclusion, our results indicated that addition of OcraTox can counteract the deleterious effects caused by OTA in laying hens.
Celik, I<., Denli, M., Erturk, M., Ozturkcan, 0. and Doran, F. 2001. Evaluation of dry yeast (Saccltaromyces cerevisiae) compounds in the feed to reduce aflatoxin B, (AFB,) residues and toxicity to Japanese quails (Coturnis coturnix japonica). J. Apa. h i m . Res., 20: 245-250.To study the effects of dry yeast (Saccharomyces cerevkiae) as adsorbent when given a h t o x i n B, (AFBJ on the weight gain, feed consumption, feed conversion ratio, pathological alterations and serum parameters, 200 Japanese quail chicks were divided into 4groups in an experiment lasting 35 days, when the birds were slaughtered. The probiotic was given in group 1; 0.1 per cent with 100 pg ARBl added daily in the concentrate feed; 2nd group was given O.2per cent probiotic with 100 pg AI;TBI, 3rd group 100 pg AI;TB1 witlmut adsorbent and 4th group served as control. The livers and spleens were swollen cutd congested in group 1 and 3. Serum GOT, GPT and ALIC P were elevated in group 3 compared with the probiotic 'Present address:
246I<. Celik and coworkers (Saccharoinyces cerevisiae) groups (PcO. 01). No statistical differences mere fowid between groups irt serum AFP levels (P
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.