Comprehensive measurement of IL-6 and survivin in serum could be served as a convincing biomarker for clinical response in ETN-treated patients with established RA.
Aconitum is a medicinal treasure trove that grows extensively on fertile pastures in Xinjiang Province (China); however, its molecular genetic characteristics are still poorly studied. We studied Aconitum kusnezoffii Reichb., Aconitum soongaricum Stapf., Aconitum carmichaelii Debx. and Aconitum leucostomum Worosch, using random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) techniques, to evaluate their genetic relationship and potential medicinal value. Our results showed that A.
kusnezoffii Reichb. and A.
soongaricum Stapf. have close genetic relationship and cluster together. Polymorphism rates of 97.25% and 98.92% were achieved by using 15 RAPD and 15 ISSR primers, respectively. Based on Nei's gene diversity (H) and Shannon's index (I), the inter-population diversity (Hs) was higher when compared with the intra-population diversity (Hp). Among the three Aconitum populations, the coefficient of gene differentiation (Gst) was 0.4358 when evaluated by RAPD and 0.5005 by ISSR. The genetic differentiation among the three Aconitum populations was highly significant, suggesting low gene flow (Nm). This was confirmed by the estimates of gene flow (Nm = 0.6473 and Nm = 0.4991, based on ISSR and RAPD data, respectively). Comparing the RAPD and ISSR results, the two DNA markers proved similarly effective in the assessment of the genetic characteristics of the studied Aconitum populations and could be used for reliable fingerprinting and mapping in studies on Aconitum diversity in view of Aconitum suitability for development and protection.
Brucellosis is a zoonotic disease caused by Brucella. There is no effective vaccine against human brucellosis. Omp19 and Omp25 are the outer membrane proteins of Brucella. They are widely expressed and highly conserved in Brucella and have high immunogenicity. Herein, we aim to identify multi-epitope vaccine candidates based on Omp19 and Omp25. We analyzed the physicochemical properties and protein structure of Omp19 and Omp25, and predicted the corresponding B cell and T cell epitopes using bioinformatics analysis. Omp19 and Omp25 were composed of 177 amino acids and 213 amino acids, respectively. They were both stable hydrophilic proteins. The instability indices were 44.8 and 23, respectively. The hydrophilicity was −0.1 and −0.317, respectively. In the secondary structure of Omp19 and Omp25 proteins, the α-helix accounted for 12.43% and 23.94%, the β-sheet was 18.64% and 23.47%, the β-turn was 6.78% and 4.23%, and the random coil was 62.15% and 48.36%. Finally, 5 B cell epitopes, 3 Th-cell epitopes and 5 CTL cell epitopes of Omp19 protein, and 4 B cell epitopes, 3 Th-cell epitopes, and 5 CTL cell epitopes of Omp25 protein were selected as vaccine candidates. In conclusion, we obtained potential B cell and T cell epitopes of the Brucella outer membrane Omp19 and Omp25 proteins. This lays the foundation for the further design of multi-epitope vaccine of Brucella.
Systemic lupus erythematosus are all involved autoimmune illnesses with similar clinical, genetic and pathogenic characteristics. However, it is still uncertain what characteristics these disorder's deoxyribonucleic acid methylation patterns have in common. To determine the typical methylation patterns of autoimmune illnesses, we undertook to analyze the methylation data for numerous inflammatory disorders in a unified manner, which included samples from systemic lupus erythematosus. In clusters of differentiation 4 + T cells, we discovered 15 289 locations that were differently methylated in patients with various autoimmune diseases compared to controls in medical imaging. In addition to this, the artificial intelligence plays a greater role in predicting the model of therapeutic effect of systemic lupus erythematosus. We determined that genes involved in the type I interferon pathway were significantly enriched at the regions that displayed the most substantial differential methylation. Interferon-induced protein 44-like is another interferon-related gene, but it is not annotated by gene ontology. The results showed that clusters of differentiation 4 + T cells from systemic lupus erythematosus patients often had hypo methylation of interferon-related genes; moreover interferonrelated gene deoxyribonucleic acid methylation patterns may be useful diagnostic indicators for systemic lupus erythematosus.
This study examined the effects of the PI3K/AKT pathway and mitochondrial autophagy in macrophages and the leukocyte count after pulmonary infection. Sprague‒Dawley rats were subjected to tracheal injection of lipopolysaccharide (LPS) to establish animal models of pulmonary infection. By inhibiting the PI3K/AKT pathway or inhibiting/inducing mitochondrial autophagy in macrophages, the severity of the pulmonary infection and the leukocyte count were altered. The PI3K/AKT inhibition group did not show a significant difference in leukocyte counts compared with the infection model group. Mitochondrial autophagy induction alleviated the pulmonary inflammatory response. The infection model group had significantly higher levels of LC3B, Beclin1, and p-mTOR than the control group. The AKT2 inhibitor group exhibited significantly increased levels of LC3B and Beclin1 compared with the control group (P < 0.05), and the Beclin1 level was significantly higher than that in the infection model group (P < 0.05). Compared with the infection model group, the mitochondrial autophagy inhibitor group exhibited significantly decreased levels of p-AKT2 and p-mTOR, whereas the levels of these proteins were significantly increased in the mitochondrial autophagy inducer group (P < 0.05). PI3K/AKT inhibition promoted mitochondrial autophagy in macrophages. Mitochondrial autophagy induction activated the downstream gene mTOR of the PI3K/AKT pathway, alleviated pulmonary inflammatory reactions, and decreased leukocyte counts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.