Summary Graphitic carbon nitride is of interest for its intercalation, ion exchange, and redox properties as it exhibits high catalytic activity. Besides, its high nitrogen content and facile synthesis procedure may provide a good balance between activity and durability. We report novel g‐C3N4 based MOF as a novel electrocatalyst for methanol oxidation reaction (MOR). Two methods are involved in the catalytic synthesis, namely the hydrothermal method for the Cu/Ni MOF and its composites synthesis, and g‐C3N4 is obtained by pyrolysis of melamine. To explore the structural and morphological properties, all the catalysts were eventually characterized using XRD, FTIR, SEM, and EDX techniques, whereas cyclic voltammetry (CV) revealed the electrochemical response for the oxidation of methanol in 3 M methanol and 1 M NaOH on modified glassy carbon electrode (GCE). The electrochemical results illustrate that as the amount of g‐C3N4 increases current density for methanol oxidation reaction (MOR). The maximum current density is 103.42 mA/cm2 shown by Cu/Ni MOF@5 wt% g‐C3N4 at 0.9 V while the scan rate is 50 mV/s. Thus, graphitic carbon nitride addition in MOF composites enhanced its durability and high carbon monoxide (CO) tolerance makes active catalysts in alkaline electrolyte.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.