SummaryProtein kinase B/AKT is a highly connected protein involved in a range of signaling pathways. Although it is known to regulate several proteins in the apoptotic pathway, its system-level effects remain poorly understood. We investigated the dynamic interactions between AKT and key apoptotic proteins and constructed a deterministic ordinary differential equation protein interaction model of extrinsic apoptosis. Incorporating AKT and its indirect inhibitor, phosphatase and tensin homolog (PTEN), this was used to generate predictions of system dynamics. Using eigen analysis, we identified AKT and cytochrome c as the protein species most sensitive to perturbations. Cell death assays in Type II HCT116 colorectal carcinoma cells revealed a tendency toward Type I cell death behavior in the XIAP−/− background, with cells displaying accelerated TRAIL-induced apoptosis. Finally, AKT inhibition experiments implicated AKT and not PTEN in influencing apoptotic proteins during early phases of TRAIL-induced apoptosis.
Long-chain saturated fatty acids are lipotoxic to pancreatic β-cells, whereas most unsaturates are better tolerated and some may even be cytoprotective. Fatty acids alter autophagy in β-cells and there is increasing evidence that such alterations can impact directly on the regulation of viability. Accordingly, we have compared the effects of palmitate (C16:0) and palmitoleate (C16:1) on autophagy in cultured β-cells and human islets. Treatment of BRIN-BD11 β-cells with palmitate led to enhanced autophagic activity, as judged by cleavage of microtubule-associated protein 1 light chain 3-I (LC3-I) and this correlated with a marked loss of cell viability in the cells. In addition, transfection of these cells with an mCherry-YFP-LC3 reporter construct revealed the accumulation of autophagosomes in palmitate-treated cells, indicating an impairment of autophagosome-lysosome fusion. This was also seen upon addition of the vacuolar ATPase inhibitor, bafilomycin A1. Exposure of BRIN-BD11 cells to palmitoleate (C16:1) did not lead directly to changes in autophagic activity or flux, but it antagonised the actions of palmitate. In parallel, palmitoleate also improved the viability of palmitate-treated BRIN-BD11 cells. Equivalent responses were observed in INS-1E cells and in isolated human islets. Taken together, these data suggest that palmitate may cause an impairment of autophagosome-lysosome fusion. These effects were not reproduced by palmitoleate which, instead, antagonised the responses mediated by palmitate suggesting that attenuation of β-cell stress may contribute to the improvement in cell viability caused by the mono-unsaturated fatty acid.
Chalmers Street, Surry Hill, NSW 2010, Australia. gshe6437@mail.usyd.edu.au The transition from fibrous to osseous regenerate during mandibular distraction osteogenesis is accompanied by an increase in cell clearance via apoptosis. A slow to moderate distraction rate allows for the most typical pattern of bone healing while a rapid rate prolongs the healing process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.