What factors determine the persistence of species in fragmented habitats? To address this question, we studied the relative impacts of forest deterioration and fragmentation on bird species in 12 rainforest fragments in Kenya, combining 6 years of individual capture-recapture data with measurements of current captures and museum specimens. Species mobility, as estimated from species-specific dispersal rates, and tolerance to habitat deterioration, as estimated from change in fluctuating asymmetry with increasing habitat disturbance, explained 88% of the variation in patch occupancy among eight forest bird species. Occupancy increased with mobility and with tolerance to deterioration, where both variables contributed equally to this relationship. We conclude that individual-level study, such as of dispersal behavior and phenotypic development, can predict patterns of persistence at the species level. More generally, for conservation tactics to stand a high chance of success, they should include action both within sites, to minimize habitat deterioration, and across landscapes, to maximize dispersal.
Habitat fragmentation can restrict geneflow, reduce neighbourhood effective population size, and increase genetic drift and inbreeding in small, isolated habitat remnants. The extent to which habitat fragmentation leads to population fragmentation, however, differs among landscapes and taxa. Commonly, researchers use information on the current status of a species to predict population effects of habitat fragmentation. Such methods, however, do not convey information on species-specific responses to fragmentation. Here, we compare levels of past population differentiation, estimated from microsatellite genotypes, with contemporary dispersal rates, estimated from multi-strata capture-recapture models, to infer changes in mobility over time in seven sympatric, forest-dependent bird species of a Kenyan cloud forest archipelago. Overall, populations of sedentary species were more strongly differentiated and clustered compared to those of vagile ones, while geographical patterning suggested an important role of landscape structure in shaping genetic variation. However, five of seven species with broadly similar levels of genetic differentiation nevertheless differed substantially in their current dispersal rates. We conclude that post-fragmentation levels of vagility, without reference to past population connectivity, may not be the best predictor of how forest fragmentation affects the life history of forest-dependent species. As effective conservation strategies often hinge on accurate prediction of shifts in ecological and genetic relationships among populations, conservation practices based solely upon current population abundances or movements may, in the long term, prove to be inadequate.
Vertebrate population dynamics, social organisation and space use often are closely associated with the distribution of critical resources, such as food. Tree squirrels are ideal models to study these relationships, since both key demographic parameters (reproduction, survival and dispersal) and spatio-temporal variation in food supplies (measured as seed-crop size) can be reliably estimated. In this paper we test the following two predictions underlying the association between annual food abundance and demography in six alpine red squirrel populations, both with and without time-lag effects: 1) between-season and between-year fluctuations in survival rate, population density and increase parallel those in food availability; and 2) individuals follow a resource tracking strategy and increase in density mainly the year after a rich seed-crop. Red squirrels occurred at higher densities in Scots pine forest, characterised by stable seed-crops, than in Norway spruce with more abundant but more variable seed crops. Fluctuations in numbers were positively correlated with food availability, measured as annual conifer seed-crop sizes. Overall, adult survival rates were higher than those of subadults, and survival substantially fluctuated between seasons and years. Autumn densities and rates of population increase (summer-autumn) were strongly correlated with the same year's autumn seed-crop, while correlations with the previous year's seed-crop (time-lag models) were either weak (population density) or absent (population increase). Results of this paper show that fluctuations in red squirrel densities in habitats with strong temporal variation in seed production are more closely linked with food availability than in more stable habitats. In addition, in the Alpine conifer forests squirrel population sizes, in autumn, increase in synchrony with food resources, eliminating the population lag normally present when resources are produced in pulses
1. Citizen science is gaining increasing prominence as a tool for science and engagement. However, despite being a potentially valuable tool for sustainable development, citizen science has little visibility in many developing countries.2. We undertook a collaborative prioritisation process with experts in conservation and the environment to assess the potential of environmental citizen science in East Africa, including its opportunities, benefits and barriers. This provided principles that are applicable across developing countries, particularly for large-scale citizen science.3. We found that there was great potential for citizen science to add to our scientific knowledge of natural resources and biodiversity trends. Many of the important benefits of citizen science were for people, as well as the environment directly.Major barriers to citizen science were mostly social and institutional, although projects should also consider access to suitable technology and language barriers. 4. Policy implications. Citizen science can provide data to support decision-making and reporting against international targets. Participation can also provide societal benefits, informing and empowering people, thus supporting the United Nations'This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.