During the stress of cardiopulmonary resuscitation (CPR), it is difficult to maintain the right rhythm and correct ratio of insufflations to chest compressions and to exert the compressions at a constant pressure. In this paper, we propose and demonstrate an integrated sensor system-the "Rhythm of Life Aid" (ROLA) to support medical staff during CPR of newborn infants. The design concept is based on interactive audio and visual feedback with consideration of functionalities and user friendliness. A prototype ROLA device is built, consisting of a transparent foil integrated with pressure sensor and electroluminescent foil actuators for indication of the exerted chest compression pressure, as well as an audio box to generate distinctive sounds as audio guidance for insufflations and compressions. To evaluate the performance of the ROLA device, a sensory mannequin and a dedicated software interface are implemented to give immediate feedback and record data for further processing. Tests of the ROLA prototype on the sensory mannequin by ten pairs of a doctor and a nurse at Máxima Medical Centre in Veldhoven, The Netherlands show that the use of ROLA device achieves a more constant rhythm and pressure of chest compressions during CPR of newborn infants.
Cardiopulmonary resuscitation manikins are used for training personnel in performing cardiopulmonary resuscitation. State-of-the-art cardiopulmonary resuscitation manikins are still anatomically and physiologically low-fidelity designs. The aim of this research was to design a manikin that offers high anatomical and physiological fidelity and has a cardiac and respiratory system along with integrated flow sensors to monitor cardiac output and air displacement in response to cardiopulmonary resuscitation. This manikin was designed in accordance with anatomical dimensions using a polyoxymethylene rib cage connected to a vertebral column from an anatomical female model. The respiratory system was composed of silicon-coated memory foam mimicking lungs, a polyvinylchloride bronchus and a latex trachea. The cardiovascular system was composed of two sets of latex tubing representing the pulmonary and aortic arteries which were connected to latex balloons mimicking the ventricles and lumped abdominal volumes, respectively. These balloons were filled with Life/form simulation blood and placed inside polyether foam. The respiratory and cardiovascular systems were equipped with flow sensors to gather data in response to chest compressions. Three non-medical professionals performed chest compressions on this manikin yielding data corresponding to force–displacement while the flow sensors provided feedback. The force–displacement tests on this manikin show a desirable nonlinear behaviour mimicking chest compressions during cardiopulmonary resuscitation in humans. In addition, the flow sensors provide valuable data on the internal effects of cardiopulmonary resuscitation. In conclusion, scientifically designed and anatomically high-fidelity designs of cardiopulmonary resuscitation manikins that embed flow sensors can improve physiological fidelity and provide useful feedback data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.