2 nm thin gold nanowires (AuNWs) have extremely high aspect ratio (≈10 000) and are nanoscale soft building blocks; this is different from conventional silver nanowires (AgNWs), which are more rigid. Here, highly sensitive, stretchable, patchable, and transparent strain sensors are fabricated based on the hybrid films of soft/hard networks. They are mechanically stretchable, optically transparent, and electrically conductive and are fabricated using a simple and cost-effective solution process. The combination of soft and more rigid nanowires enables their use as high-performance strain sensors with the maximum gauge factor (GF) of ≈236 at low strain (<5%), the highest stretchability of up to 70% strain, and the optical transparency is from 58.7% to 66.7% depending on the amount of the AuNW component. The sensors can detect strain as low as 0.05% and are energy efficient to operate at a voltage as low as 0.1 V. These attributes are difficult to achieve with a single component of either AuNWs or AgNWs. The outstanding sensing performance indicates their potential applications as "invisible" wearable sensors for biometric information collection, as demonstrated in applications for detecting facial expressions, respiration, and apexcardiogram.The ORCID identification number(s) for the author(s) of this article can be found under http://dx.
Devices made from traditional conductive bulk materials using complex microfabrication methods often are restricted to being rigid and in some cases, flexible but not strethcable.
The performance of quantum dot light-emitting diodes (QD-LEDs) was investigated for different hole transport layers with small molecules and polymers: poly(4-butyl-phenyl-diphenyl-amine), poly-N-vinylcarbazole (PVK), N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-diphenyl-4,4'-diamine, 4,4',4″-tris(N-carbazolyl)-triphenyl-amine (TCTA), and 4,4'-bis(carbazole-9-yl)biphenyl (CBP). The electroluminescence performance of QD-LEDs was considerably improved by adding small molecules (TCTA or CBP) having high hole mobilily to the polymer hole transport material (PVK). The maximal current efficiency of QD-LED-based PVK was improved by 27% upon addition of 20 wt % TCTA due to the hole injection improvement. The lower turn-on voltage, the higher current density, and the higher luminance were achieved by addition of TCTA. The maximal luminance of 40900 cd/m(2) and the highest current efficiency of 14.0 cd/A with the narrow full width at half-maximum (<35 nm) were achieved by the best hole transport layer.
Percolation networks of one-dimensional (1D) building blocks (e.g., metallic nanowires or carbon nanotubes) represent the mainstream strategy to fabricate stretchable conductors. One of the inherent limitations is the control over junction resistance between 1D building blocks in natural and strained states of conductors. Herein, we report highly stretchable transparent strain-insensitive conductors using fractal gold (F-Au) nanoframework based on a one-pot templateless wet chemistry synthesis method. The monolayered F-Au nanoframework (∼20 nm in thickness) can be obtained from the one-pot synthesis without any purification steps involved and can be transferred directly to arbitrary substrates like polyethylene terephthalate, food-wrap, polydimethylsiloxane (PDMS), and ecoflex. The F-Au thin film with no capping agents leads to a highly conductive thin film without any post-treatment and can be stretched up to 110% strain without significantly losing conductivity yet with the optical transparency of 70% at 550 nm. Remarkably, the F-Au thin film shows the strain-insensitive behavior up to 20% stretching strain. This originates from the unique fractal nanomesh-like structure which can absorb external mechanical forces, thus maintaining electron pathways throughout the nanoframework. In addition, a semitransparent bilayered F-Au film on 100% prestrained PDMS could achieve to a high stretchability of 420% strain with negligible resistance changes under low-level strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.