It is well‐known that the extracellular concentration of calcium affects neuronal excitability and synaptic transmission. Less is known about the physiological concentration of extracellular calcium in the brain. In electrophysiological brain slice experiments, the artificial cerebrospinal fluid traditionally contains relatively high concentrations of calcium (2‐4 mM) to support synaptic transmission and suppress neuronal excitability. Using an ion‐selective electrode, we determined the fraction of ionized calcium in healthy human cerebrospinal fluid to 1.0 mM of a total concentration of 1.2 mM (86%). Using patch‐clamp and extracellular recordings in the CA1 region in acute slices of rat hippocampus, we then compared the effects of this physiological concentration of calcium with the commonly used 2 mM on neuronal excitability, synaptic transmission, and long‐term potentiation (LTP) to examine the magnitude of changes in this range of extracellular calcium. Increasing the total extracellular calcium concentration from 1.2 to 2 mM decreased spontaneous action potential firing, induced a depolarization of the threshold, and increased the rate of both de‐ and repolarization of the action potential. Evoked synaptic transmission was approximately doubled, with a balanced effect between inhibition and excitation. In 1.2 mM calcium high‐frequency stimulation did not result in any LTP, whereas a prominent LTP was observed at 2 or 4 mM calcium. Surprisingly, this inability to induce LTP persisted during blockade of GABAergic inhibition. In conclusion, an increase from the physiological 1.2 mM to 2 mM calcium in the artificial cerebrospinal fluid has striking effects on neuronal excitability, synaptic transmission, and the induction of LTP. Open science badges This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/. Read the Editorial Highlight for this article on page 435.
Gamma oscillations (30–80 Hz) are fast network activity patterns frequently linked to cognition. They are commonly studied in hippocampal brain slices in vitro, where they can be evoked via pharmacological activation of various receptor families. One limitation of this approach is that neuronal activity is studied in a highly artificial extracellular fluid environment, as provided by artificial cerebrospinal fluid (aCSF). Here, we examine the influence of human cerebrospinal fluid (hCSF) on kainate‐evoked and spontaneous gamma oscillations in mouse hippocampus. We show that hCSF, as compared to aCSF of matched electrolyte and glucose composition, increases the power of kainate‐evoked gamma oscillations and induces spontaneous gamma activity in areas CA3 and CA1 that is reversed by washout. Bath application of atropine entirely abolished hCSF‐induced gamma oscillations, indicating critical contribution from muscarinic acetylcholine receptor‐mediated signaling. In separate whole‐cell patch clamp recordings from rat hippocampus, hCSF increased theta resonance frequency and strength in pyramidal cells along with enhancement of h‐current (Ih) amplitude. We found no evidence of intrinsic gamma frequency resonance at baseline (aCSF) among fast‐spiking interneurons, and this was not altered by hCSF. However, hCSF increased the excitability of fast‐spiking interneurons, which likely contributed to gamma rhythmogenesis. Our findings show that hCSF promotes network gamma oscillations in the hippocampus in vitro and suggest that neuromodulators distributed in CSF could have significant influence on neuronal network activity in vivo.
This is an open access article under the terms of the Creat ive Commo ns Attri bution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.