Latent class models are a convenient and intuitive way to introduce taste heterogeneity in discrete choice models by relating attributes of the decision makers with unobserved behavioral classes, hence allowing for a more accurate market segmentation. Estimation and specification of latent class models can be improved with the use of psychometric indicators that measure the effect of unobserved attributes in the individual preferences. This paper proposes a method to introduce these additional indicators in the specification of integrated latent class and discrete choice models, through the definition of measurement equations that relate the indicators to attributes of the decision maker. The method is implemented for two modechoice case studies and compared with alternative methods to introduce indicators. Results show that the proposed method generates significantly different estimates for the class and choice models and provide additional insight into the behavior of each class.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.