An initial review (PCET1) on proton-coupled electron transfer (PCET) by Huynh and Meyer appeared in Chemical Reviews in 2007. 1 This is a perennial review, a follow up on the original. It was intended for the special Chemical Reviews edition on Proton Coupled Electron Transfer that appeared in December, 2010 (Volume 110, Issue 12 Pages 6937-710). The reader is referred to it with articles on electrochemical approaches to studying PCET by Costentin and coworkers, 2 theory of electron proton transfer reactions by Hammes-Schiffer and coworkers, 3 proton-coupled electron flow in proteins and enzymes by Gray and coworkers, 4 and the thermochemistry of proton-coupled electron transfer by Mayer and coworkers. 5 Coverage for the current review is intended to be broad, covering all aspects of the topic comprehensively with literature coverage overlapping with the later references in PCET1 until late 2010. There is a growing understanding of the importance of PCET in chemistry and biology and its implications for catalysis and energy conversion. This has led to a series of informative reviews that have appeared since 2007. They include: "The possible role of Proton-coupled electron Transfer (PCET) in Water oxidation by Photosystem II" by Meyer and coworkers in 2007, 6 "Theoretical studies of proton-coupled electron transfer: Models and concepts relevant to bioenergetics" by Hammes-Schiffer and coworkers in 2008, 7 "Electrochemical Approach to the Mechanistic Study of Proton-Coupled Electron Transfer" by Costentin in 2008, 8 "Proton-Coupled Electron Transfer in Biology: Results from Synergistic Studies in Natural and Model Systems" by Nocera and Reece in 2009, 9 and "Integrating Proton-Coupled Electron Transfer and Excited States" by Meyer and coworkers in 2010. 10
All higher life forms use oxygen and respiration as their primary energy source. The oxygen comes from water by solar-energy conversion in photosynthetic membranes. In green plants, light absorption in photosystem II (PSII) drives electron-transfer activation of the oxygen-evolving complex (OEC). The mechanism of water oxidation by the OEC has long been a subject of great interest to biologists and chemists. With the availability of new molecular-level protein structures from X-ray crystallography and EXAFS, as well as the accumulated results from numerous experiments and theoretical studies, it is possible to suggest how water may be oxidized at the OEC. An integrated sequence of light-driven reactions that exploit coupled electron-proton transfer (EPT) could be the key to water oxidation. When these reactions are combined with long-range proton transfer (by sequential local proton transfers), it may be possible to view the OEC as an intricate structure that is "wired for protons".
There is a remarkable redox chemistry of higher oxidation state M(IV)-M(VI) polypyridyl complexes of Ru and Os. They are accessible by proton loss and formation of oxo or nitrido ligands, examples being cis-[RuIV(bpy)2(py)(O)]2+ (RuIV=O2+, bpy=2,2'-bipyridine, and py=pyridine) and trans-[OsVI(tpy)(Cl)2(N)]+ (tpy=2,2':6',2' '-terpyridine). Metal-oxo or metal-nitrido multiple bonding stabilizes the higher oxidation states and greatly influences reactivity. O-atom transfer, hydride transfer, epoxidation, C-H insertion, and proton-coupled electron-transfer mechanisms have been identified in the oxidation of organics by RuIV=O2+. The Ru-O multiple bond inhibits electron transfer and promotes complex mechanisms. Both O atoms can be used for O-atom transfer by trans-[RuVI(tpy)(O)2(S)]2+ (S=CH3CN or H2O). Four-electron, four-proton oxidation of cis,cis-[(bpy)2(H2O)RuIII-O-RuIII(H2O)(bpy)2]4+ occurs to give cis,cis-[(bpy)2(O)RuV-O-RuV(O)(bpy)2]4+ which rapidly evolves O2. Oxidation of NH3 in trans-[OsII(tpy)(Cl)2(NH3)] gives trans-[OsVI(tpy)(Cl)2(N)]+ through a series of one-electron intermediates. It and related nitrido complexes undergo formal N- transfer analogous to O-atom transfer by RuIV=O2+. With secondary amines, the products are the hydrazido complexes, cis- and trans-[OsV(L3)(Cl)2(NNR2)]+ (L3=tpy or tpm and NR2-=morpholide, piperidide, or diethylamide). Reactions with aryl thiols and secondary phosphines give the analogous adducts cis- and trans-[OsIV(tpy)(Cl)2(NS(H)(C6H4Me))]+ and fac-[OsIV(Tp)(Cl)2(NP(H)(Et2))]. In dry CH3CN, all have an extensive multiple oxidation state chemistry based on couples from Os(VI/V) to Os(III/II). In acidic solution, the OsIV adducts are protonated, e.g., trans-[OsIV(tpy)(Cl)2(N(H)N(CH2)4O)]+, and undergo proton-coupled electron transfer to quinone to give OsV, e.g., trans-[OsV(tpy)(Cl)2(NN(CH2)4O)]+ and hydroquinone. These reactions occur with giant H/D kinetic isotope effects of up to 421 based on O-H, N-H, S-H, or P-H bonds. Reaction with azide ion has provided the first example of the terminal N4(2-) ligand in mer-[OsIV(bpy)(Cl)3(NalphaNbetaNgammaNdelta)]-. With CN-, the adduct mer-[OsIV(bpy)(Cl)3(NCN)]- has an extensive, reversible redox chemistry and undergoes NCN(2-) transfer to PPh3 and olefins. Coordination to Os also promotes ligand-based reactivity. The sulfoximido complex trans-[OsIV(tpy)(Cl)2(NS(O)-p-C6H4Me)] undergoes loss of O2 with added acid and O-atom transfer to trans-stilbene and PPh3. There is a reversible two-electron/two-proton, ligand-based acetonitrilo/imino couple in cis-[OsIV(tpy)(NCCH3)(Cl)(p-NSC6H4Me)]+. It undergoes reversible reactions with aldehydes and ketones to give the corresponding alcohols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.