BackgroundThe dominant viral etiologies responsible for acute respiratory infections (ARIs) are poorly understood, particularly among hospitalized children in resource-limited tropical countries where morbidity and mortality caused by ARIs are highest. Improved etiological insight is needed to improve clinical management and prevention.ObjectivesWe conducted a three-year prospective descriptive study of severe respiratory illness among children from 2 months to 13 years of age within the largest referral hospital for infectious diseases in southern Vietnam.MethodsMolecular detection for 15 viral species and subtypes was performed on three types of respiratory specimens (nose, throat swabs and nasopharyngeal aspirates) using a multiplex RT-PCR kit (Seeplex™ RV detection, Seegene) and additional monoplex real-time RT-PCRs.ResultsA total of 309 children were enrolled from November 2004 to January 2008. Viruses were identified in 72% (222/309) of cases, including respiratory syncytial virus (24%), influenza virus A and B (17%), human bocavirus (16%), enterovirus (9%), human coronavirus (8%), human metapneumovirus (7%), parainfluenza virus 1–3 (6%), adenovirus (5%), and human rhinovirus A (4%). Co-infections with multiple viruses were detected in 20% (62/309) of patients. When combined, diagnostic yields in nose and throat swabs were similar to nasopharyngeal aspirates.ConclusionSimilar to other parts in the world, RSV and influenza were the predominant viral pathogens detected in Vietnamese hospitalized children. Combined nasal and throat swabs are the specimens of choice for sensitive molecular detection of a broad panel of viral agents. Further research is required to better understand the clinical significance of single versus multiple viral coinfections and to address the role of bacterial (co-)infections involved in severe respiratory illness.
Highlights► A novel real-time RT-PCR using specific locked nucleic acid probes is described. ► The assay is quantitative and distinguishes RSV subgroup A & B. ► Compared with a commercial multiplex PCR using 264 respiratory samplesin Vietnam. ► Sensitivity was significantly higher with detection a rate of 32 vs. 24%.
Background: Hepatitis B virus (HBV) infection is a major public health problem globally. HBV genotypes and subgenotypes influence disease transmission, progression, and treatment outcome. A study was conducted among treatment naive chronic HBV patients in southern Vietnam to determine the genotypes and subgenotypes of HBV. Methods: A prospective, exploratory study was conducted among treatment naïve chronic HBV patients attending at the Hospital for Tropical Diseases, in Ho Chi Minh City, Vietnam during 2012, 2014 and 2016. HBV DNA positive samples (systematically selected 2% of all treatment naïve chronic patients during 2012 and 2014, and 8% of all treatment naïve chronic patients during 2016) were subjected to whole genome sequencing (WGS) either by Sanger or Illumina sequencing. WGS was used to define genotype, sub-genotype, recombination, and the prevalence of drug resistance and virulence-associated mutations. Results: One hundred thirty five treatment naïve chronic HBV patients including 18 from 2012, 24 from 2014, and 93 from 2016 were enrolled. Of 135 sequenced viruses, 72.6% and 27.4% were genotypes B and C respectively. Among genotype B isolates, 87.8% and 12.2% were subgenotypes B4 and B2 respectively. A G1896A mutation in the precore gene was present in 30.6% of genotype B isolates. The genotype C isolates were all subgenotype C1 and 78.4% (29/37) of them had at least one basal core promoter (BCP) mutation. A1762T and G1764 T mutations and a double mutation (A1762T and G1764 T) in the BCP region were significantly more frequent in genotype C1 isolates (p < 0.001). Conclusion: HBV genotype B including subgenotype B4 is predominant in southern Vietnam. However, one fourth of the chronic HBV infections were caused by subgenotype C1.
The evolution of influenza viruses is fundamentally shaped by within-host processes. However, the within-host evolutionary dynamics of influenza viruses remain incompletely understood, in part because most studies have focused on infections in healthy adults based on single timepoint data. Here, we analysed the within-host evolution of 82 longitudinally-sampled individuals, mostly young children, infected with A/H1N1pdm09 or A/H3N2 viruses between 2007 and 2009. For A/H1N1pdm09 infections during the 2009 pandemic, nonsynonymous minority variants were more prevalent than synonymous ones. For A/H3N2 viruses in young children, early infection was dominated by purifying selection. As these infections progressed, nonsynonymous variants typically increased in frequency even when within-host virus titres decreased. Unlike the short-lived infections of adults where de novo within-host variants are rare, longer infections in young children allow for the maintenance of virus diversity via mutation-selection balance creating potentially important opportunities for within-host virus evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.