Crystallographic structures of two new orthophosphates Ca0.50SbFe(PO4)3 and CaSb0.50Fe1.50(PO4)3 obtained by conventional solid state reaction techniques at 900 °C, were determined at room temperature from X-ray powder diffraction using Rietveld analysis. The two compounds belong to the Nasicon structural family. The space group is R3 for Ca0.50SbFe(PO4)3 and R3c for CaSb0.50Fe1.50(PO4)3. Hexagonal cell parameters for Ca0.50SbFe(PO4)3 and CaSb0.50Fe1.50(PO4)3 are: a=8.257(1) Å, c=22.276(2) Å, and a=8.514(1) Å, c=21.871(2) Å, respectively. Ca2+ and vacancies in {[Ca0.50]3a[◻0.50]3b}M1SbFe(PO4)3 are ordered within the two positions, 3a and 3b, of M1 sites. Structure refinements show also a quasi-ordered distribution of Sb5+ and Fe3+ ions within the Nasicon framework. Thus, in {[Ca0.50]3a[◻0.50]3b}M1SbFe(PO4)3, each Ca(3a)O6 octahedron shares two faces with two Fe3+O6 octahedra and each vacancy (◻(3b)O6) site is located between two Sb5+O6 octahedra. In [Ca]M1Sb0.50Fe1.50(PO4)3 compound (R3c space group), all M1 sites are occupied by Ca2+ and the Sb5+ and Fe3+ ions are randomly distributed within the Nasicon framework.
Crystal structures of A0.50SbFe(PO4)3(A=Mn, Cd) phases, obtained by solid state reaction at 920 °C, were determined at room temperature from X-ray powder diffraction (XRD) using the Rietveld method. The structures of the two samples are of the Nasicon-type with the R3 space group. Hexagonal cell parameters for A=Mn and Cd are: a=8.375(1) Å, c=21.597(2) Å and a=8.313(1) Å, c=21.996(2) Å, respectively. From XRD data, it is difficult to unambiguously distinguish between Cd2+ and Sb5+ ions in Cd0.50SbFe(PO4)3 and between Mn2+ and Fe3+ cations in Mn0.50SbFe(PO4)3. Nevertheless the overall set of cation–anion distances within the Nasicon framework clearly shows that the cation distribution can be illustrated by the {[A0.50]3a[◻0.50]3b}M1SbFe(PO4)3 (A=Mn, Cd) crystallographic formula. The divalent A2+ cations and vacancies are ordered within the two positions, 3a and 3b, of the M1 sites. Structure refinements show also a quasi-ordered distribution of Sb5+ and Fe3+ ions within the Nasicon framework. Thus, each A(3a)O6(A=Mn, Cd) octahedron shares two faces with two Fe3+O6 octahedra and each vacancy (◻(3b)O6) site is located between two Sb5+O6 octahedra.
The title compounds are prepared by calcining stoichiometric amounts of Fe2O3, Sb2O3, NH4H2PO4, and SrCO3 or BaCO3 or Pb(NO3)2 in air (staged complex schedule max.
A new Ca1/3Sb1/6Bi1/2PO4 “CaSb0.50Bi1.50(PO4)3” phosphate has been synthesized by conventional solid-state reaction techniques at 900 °C in air atmosphere. Their crystallographic structures were determined at room temperature from X-ray powder diffraction (XRPD) data using the Rietveld analysis. CaII1/3SbV1/6BiIII1/2PO4 material possesses the high-temperature BiPO4 monoclinic structure variety. It crystallizes in monoclinic system with P21/m space group and the cell parameters are: a = 4.9358(1) Å, b = 6.9953(2), c = 4.7075(1) Å, and β = 96.2(1)°. Their structure can be described as composed of alternating edge-sharing AO8 (A = Ca, Sb, Bi) bisdisphenoids and PO4 tetrahedra forming chains parallel to the b axis. Every AO8 polyhedron is surrounded by six PO4 and every PO4 tetrahedron is surrounded by six AO8 polyhedra. Infrared spectroscopic study was used to obtain further structural information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.