Three-phase inverters are widely used in grid-connected renewable energy systems. This paper presents a new control methodology for grid-connected inverters using an adaptive fuzzy control (AFC) technique. The implementation of the proposed controller does not need prior knowledge of the system mathematical model. The capabilities of the fuzzy system in approximating the nonlinear functions of the grid-connected inverter system are exploited to design the controller. The proposed controller is capable to achieve the control objectives in the presence of both parametric and modelling uncertainties. The control objectives are to regulate the grid power factor and the dc output voltage of the photovoltaic systems. The closed-loop system stability and the updating laws of the controller parameters are determined via Lyapunov analysis. The proposed controller is simulated under different system disturbances, parameters, and modelling uncertainties to validate the effectiveness of the designed controller. For evaluation, the proposed controller is compared with conventional proportional-integral (PI) controller and Takagi–Sugeno–Kang-type probabilistic fuzzy neural network controller (TSKPFNN). The results demonstrated that the proposed AFC showed better performance in terms of response and reduced fluctuations compared to conventional PI controllers and TSKPFNN controllers.
In recent years, the penetration of renewable power generations into the electrical grid has substantially increased. Continuous deployment of power electronic-based distributed generations and the reduction of traditional synchronous machines with their essential dynamics in modern power networks are very critical in this change. The use of power electronic inverters leads to the dissociation of sources and loads and lowering the power system inertia. Under power imbalance, this drop causes an elevated rate of change in frequency and frequency divergences, which has a notable impact on the system’s frequency stability. As a result, enhanced control techniques for grid-tied electronic converters are required to secure the power system’s stability and support. The virtual-synchronous generator (VSG) control is used to mimic the dynamics of a rotating synchronous generator and improve the power system’s stability. In this article, the problems of such low-inertia power systems, as well as the VSG technologies, are explored. This research also looks at different control orders and strategies for virtual-synchronous generators (VSG). In addition, the utilization of energy storage and critical matters in VSG and further research recommendations are explained.
Fuzzy logic systems with approximation capabilities provide effective control for nonlinear and uncertain systems. Due to the characteristics of photovoltaic (PV) and the PWM method, a grid-connected PV system is a considerably nonlinear system with unpredictable parameters. In this study, a new adaptive interval type-2 fuzzy approximation-based controller (AIT2FAC) was developed to control a three-phase grid-connected PV system. The proposed controller can be implemented without any prior knowledge of the system mathematical model. In the presence of both parametric and modeling uncertainty, the developed controller can achieve the control objectives. The proposed controller utilizes the principle of input-output feedback linearization and the approximation capability of fuzzy systems to the control inverter current components to track prescribed reference values. The proposed AIT2FAC controller is capable of handling system uncertainties due to the interval type-2 fuzzy logic system capability to cope with a high level of uncertainty. Lyapunov analysis is used to determine the closed-loop system stability and the updating laws of the proposed controller parameters. The effectiveness of the designed controller to achieve the required tracking is validated for different operating cases, including system disturbances, modelling, and parameter uncertainties. For evaluation, the proposed type-2 fuzzy controller is compared to a type-1 fuzzy controller in terms of some performance measures. The comparison results demonstrate that the proposed type-2 fuzzy controller has better tracking performance than the type-1 fuzzy controller in terms of the settling time, the maximum overshoot, the integral absolute error (IAE) and the integral time of absolute error (ITAE). INDEX TERMSInterval type-2 fuzzy, adaptive control, feedback linearization, PV grid inverter. HASSAN YOUSEF received his B.Sc. (honor) and M.Sc. degrees in Electrical Engineering from
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.