We report a high-speed (∼2 kHz) dynamic multiplexed fiber Bragg grating (FBG) sensor interrogation using a wavelength-swept laser (WSL) with a polygon-scanner-based wavelength filter. The scanning frequency of the WSL is 18 kHz, and the 10 dB scanning bandwidth is more than 90 nm around a center wavelength of 1,540 nm. The output from the WSL is coupled into the multiplexed FBG array, which consists of five FBGs. The reflected Bragg wavelengths of the FBGs are 1,532.02 nm, 1,537.84 nm, 1,543.48 nm, 1,547.98 nm, and 1,553.06 nm, respectively. A dynamic periodic strain ranging from 500 Hz to 2 kHz is applied to one of the multiplexed FBGs, which is fixed on the stage of the piezoelectric transducer stack. Good dynamic performance of the FBGs and recording of their fast Fourier transform spectra have been successfully achieved with a measuring speed of 18 kHz. The signal-to-noise ratio and the bandwidth over the whole frequency span are determined to be more than 30 dB and around 10 Hz, respectively. We successfully obtained a real-time measurement of the abrupt change of the periodic strain. The dynamic FBG sensor interrogation system can be read out with a WSL for high-speed and high-sensitivity real-time measurement.
We demonstrate for the first time to our knowledge a dynamic measurement for an electric field sensor using a nematic liquid crystal (NLC) Fabry-Perot etalon and a wavelength-swept laser. It is well known that the wavelengths of the transmitted peaks of the NLC Fabry-Perot etalon depend on the applied electric field. The change in the effective refractive index of the NLC is measured according to the applied static electric field. The effective refractive index decreases from 1.67 to 1.51 as the applied the electric field intensity is increased. In addition, we measure the frequency of the dynamic variation in the electric field using a high-speed wavelength-swept laser. By measuring the modulation frequency of the transmitted peaks in the temporal domain, the frequency of the amplitude-modulated electric field can be estimated. The frequencies of the measured dynamic variations show a close agreement with the amplitude modulation frequencies of the induced electric field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.