There have been increasing reports of harmful algal blooms (HABs) worldwide. However, the factors that influence cyanobacteria dominance and HAB formation can be site-specific and idiosyncratic, making prediction challenging. The drivers of cyanobacteria blooms in Lake Paldang, South Korea, the summer climate of which is strongly affected by the East Asian monsoon, may differ from those in wellstudied North American lakes. Using the observational data sampled during the growing season in 2007-2011, a Bayesian hurdle Poisson model was developed to predict cyanobacteria abundance in the lake. The model allowed cyanobacteria absence (zero count) and nonzero cyanobacteria counts to be modeled as functions of different environmental factors. The model predictions demonstrated that the principal factor that determines the success of cyanobacteria was temperature. Combined with high temperature, increased residence time indicated by low outflow rates appeared to increase the probability of cyanobacteria occurrence. A stable water column, represented by low suspended solids, and high temperature were the requirements for high abundance of cyanobacteria. Our model results had management implications; the model can be used to forecast cyanobacteria watch or alert levels probabilistically and develop mitigation strategies of cyanobacteria blooms.
[1] We investigated the sources, fluxes, and spatial and temporal distribution of organic carbon in two large reservoirs in Korea having different trophic and hydrologic features. In Lake Paldang (river-type reservoir) most of the organic carbon comes from allochthonous sources (88%), while in Lake Chungju (lake-type reservoir) the allochthonous load contributed 52% (48% autochthonous). Strong correlations were found between the amount and contribution of allochthonous and autochthonous organic carbon and hydrologic parameters in Lake Paldang but not in Lake Chungju. The spatiotemporal fluctuation patterns of C/N ratios of particulate organic matter, chlorophyll a/particulate organic carbon values, and specific ultraviolet absorption of dissolved organic carbon were different, indicating differences in state and source of organic carbon in the two reservoirs. Our results indicate that meteorologic and hydrologic controls directly determine the state of lacustrine organic carbon in Lake Paldang, whereas autochthonous production and in situ transformation may play important roles in determining the state of lacustrine organic carbon in Lake Chungju.
-Despite numerous previous studies, relationships between watershed land use and adjacent streams and rivers at various scales in Korea remain unclear. This study investigated the relationships between land uses and the physical, chemical, and biological characteristics of 720 sites of streams and rivers across the country. The land uses at two spatial scales, including a 1-km buffer and the base watershed management region (BWMR), were computed in a geographical information system (GIS) with a digital land use/land cover map. Characteristics of land uses at two spatial scales were then correlated with the monitored multidimensional characteristics of the streams and rivers. The results of this study indicate that land use types have significant effects on stream and river characteristics. Specifically, most characteristics were negatively correlated with the proportions of urban, rice paddy, agricultural, and bare soil areas and positively correlated with the amount of forest. The site-scale and BWMR-scale analyses suggest that BWMR land use patterns were more strongly related to ecological integrity than they were to site land use patterns. Improving our understanding of land use effects will largely depend on relating the results of site-specific studies that use similar response techniques and measures to evaluate ecological integrity. In addition, our results clearly indicate that the characteristics of streams and rivers are closely linked and that land use types differentially affect those characteristics. Thus, effective restoration and management for ecological integrity of lotic system should consider the physical, chemical, and biological factors in combination.
-Stream development can generate environmental changes that impact fish communities. In temperate streams, the distribution of fish species is associated with environmental gradients. To analyze the relevant factors, large-scale exploration is required. Thus, to evaluate the distribution patterns of fish in Korea, sampling was conducted on a national scale at 720 sites over a 6-week period in 2009. A total of 124 fish species in 27 families were identified; Zacco platypus and Zacco koreanus of the Cyprinidae were the dominant and subdominant species, respectively. Of the species found, 46 (37.1%) were endemic and 4 (3.2%) exotic; of the latter, Micropterus salmoides and Lepomis macrochirus were widely distributed. Upon canonical correspondence analysis (CCA), both altitude and biological oxygen demand (BOD) were highly correlated with CCA axes 1 and 2, respectively. This explained 62.5% of the species-environment relationship. Altitude and stream order were longitudinally related to species distribution. The numbers of both total and endemic species gradually increased as streams grew in size to the fourth-fifth-order, and decreased in sixth-order, streams. Overall, fish communities were stable throughout the entire watershed, whereas some species showed site-specific occurrence patterns due to the paleogeomorphological characteristics of Korean peninsula. However, various anthropogenic activities may negatively affect fish communities. Therefore, both short-and long-term sustainable management strategies are required to conserve native fish fauna.
The histological structure and development of spines on the skin surface of Takifugu obscurus were studied during larval development conducted artificially with an average 30& salinity and 18.0-20.3°C water temperature. The epidermis comprises an outermost layer, middle layer, and the stratum germinativum, and contains three types of gland cells: small spherical or flask-shaped mucous cells, larger sacciform mucous cells, and large granular cells. The dermis and subcutis follow. The spines first appear over the ventral region at 10 days after hatching and consist of two parts: a central long tapering portion which projects into the epidermis and eventually outside of the body, and a short supporting basal portion that is embedded within the stratum compactum layer of the dermis. The central, long tapering portion has two very short processes on top until 25 days after hatching, but these two separate spines fuse into one 30 days after hatching. In contrast, the short supporting spines rooted at the base consist of three to six small spines (usually four to five spines) and are present even in the adult stage. Therefore, calcareous spines consisting of one central long spine and three to six smaller supporting spines form tetra-and septaradiate spines (mainly penta-and hexaradiate). The spines first appear over the ventral region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.