In this study, the effect of longitudinal distance H between non-aligned twin cracks is investigated using finite element damage analysis. The FE damage analysis based on the stress-modified fracture strain model is used to calculate the failure stress of non-aligned twin cracked pipe. Parametric study on the axial distance H between non-aligned twin cracks with various crack depths and lengths were conducted and compared with predictions using the alignment rules and the net-section collapse load approach for single crack provided in ASME Code. It is shown that the trend of the predicted collapse bending stresses for the non-aligned twin cracked pipes using FE damage analysis are different from the ones using the alignment rule.
In this paper, the combination rule for circumferential multiple-cracked pipe assessment is investigated using finite element damage analysis. The FE damage analysis based on the stress-modified fracture strain model is validated against limited fracture test data of two circumferential surface cracked pipes. Then systematic parametric study is performed using FE damage analysis for symmetrical surface cracked pipes. Failure bending stresses are calculated using the combination rule and the net-section collapse load approach for single crack provided in ASME BPV Code. It is found that predicted failure bending stress using the combination rule might be non-conservative when the distance between two cracks is short. To overcome the problem, a new combination criterion based on crack dimensions is proposed and compared with numerical data.
In this paper, the burst pressure estimation equations for steam generator tubes with multiple axial surface cracks are proposed based on the local collapse load approach concept. The proposed equations are for a single axial surface crack, two collinear axial surface cracks and two non-aligned axial surface cracks. The proposed equations are validated against experimental tube burst test results and finite element damage analysis for twin cracks. Predicted burst pressures agree well with the experimental results and FE analysis results, suggesting validity of the proposed equations to estimate burst pressures for twin axial surface cracks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.