A group of agents can form a flock using the augmented Cucker-Smale (C-S) model. The model autonomously aligns them to a common velocity and maintains a relative distance among the agents in a distributed manner by sharing the information among neighbors. This paper introduces the concept of inactiveness to the augmented C-S model for improving the flocking performance. It involves controlling the energy and convergence time required to form a stable flock. Inspired by the natural world where a few lazy (or inactive) workers are helpful to the group performance in social insect colonies. In this study, we analyzed different levels of inactiveness as a degree of control input effectiveness for multiple fixed-wing UAVs in the flocking algorithm. To find the appropriate inactiveness level for each flock member, the particle swarm optimization-based approach is used as the first step, based on the initial condition of the flock.However, as the significant computational burden may cause difficulties in implementing the optimization-based approach in real time, we also propose a
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.