Early intervention using dietary supplements may be effective in alleviating cognitive impairment among individuals with mild cognitive impairment (MCI). This study investigated the efficacy and safety of Lactobacillus plantarum C29-fermented soybean (DW2009) as a nutritional supplement for cognitive enhancement. One hundred individuals with MCI were randomly assigned to take DW2009 (800 mg/day, n = 50) or placebo (800 mg/day, n = 50) for 12 weeks. The primary outcome measure was change in the composite score of cognitive functions related to memory and attention, measured by computerized neurocognitive function tests. Associations between changes in serum brain-derived neurotrophic factor (BDNF) levels and cognitive performance for each treatment group were evaluated. Compared to the placebo group, the DW2009 group showed greater improvements in the combined cognitive functions (z = 2.36, p for interaction = 0.02), especially in the attention domain (z = 2.34, p for interaction = 0.02). Cognitive improvement was associated with increased serum BDNF levels after consumption of DW2009 (t = 2.83, p = 0.007). The results of this clinical trial suggest that DW2009 can be safely administered to enhance cognitive function in individuals with MCI. Increased serum BDNF levels after administering DW2009 may provide preliminary insight into the underlying effects of cognitive improvement, which suggests the importance of the gut-brain axis in ameliorating cognitive deficits in MCI.
Val66Met, a naturally occurring polymorphism in the human brain-derived neurotrophic factor (BDNF) gene resulting in a valine (Val) to methionine (Met) substitution at codon 66, plays an important role in neuroplasticity. While the effect of the BDNF Val66Met polymorphism on local brain structures has previously been examined, its impact on the configuration of the graph-based white matter structural networks is yet to be investigated. In the current study, we assessed the effect of the BDNF polymorphism on the network properties and robustness of the graph-based white matter structural networks. Graph theory was employed to investigate the structural connectivity derived from white matter tractography in two groups, Val homozygotes (n = 18) and Met-allele carriers (n = 55). Although there were no differences in the global network measures including global efficiency, local efficiency, and modularity between the two genotype groups, we found the effect of the BDNF Val66Met polymorphism on the robustness properties of the white matter structural networks. Specifically, the white matter structural networks of the Met-allele carrier group showed higher vulnerability to targeted removal of central nodes as compared with those of the Val homozygote group. These findings suggest that the central role of the BDNF Val66Met polymorphism in regards to neuroplasticity may be associated with inherent differences in the robustness of the white matter structural network according to the genetic variants. Furthermore, greater susceptibility to brain disorders in Met-allele carriers may be understood as being due to their limited stability in white matter structural connectivity.
Distinct brain alterations in response to traumatic events may render trauma-exposed individuals either resilient or vulnerable to posttraumatic stress disorder (PTSD). This study compared regional cerebral metabolic rate of glucose (rCMRglu) among trauma-exposed individuals with current PTSD (PTSD group, n = 61), those without current PTSD (Resilience/Recovery group, n = 26), and trauma-unexposed controls (Control group, n = 54). All participants underwent brain [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET) scans. Voxel-wise group differences in rCMRglu among the three groups were evaluated. Associations between rCMRglu and both PTSD severity and resilience were examined. The rCMRglu in the right anterior insula and adjacent prefrontal and striatal areas was lower in the PTSD group, while higher in the Resilience/Recovery group, compared to the Control group. In addition, the lower glucose metabolism of these areas was associated with higher severity and less improvement in PTSD symptoms in the PTSD group, while the higher levels of rCMRglu were correlated with stronger resilience in the Resilience/Recovery group. This study suggests distinct roles of the anterior insula in response to trauma between the PTSD and Resilience/Recovery groups. Heightened rCMRglu in the anterior insular regions may reflect an underlying mechanism of resilience against traumatic stress, while reduced rCMRglu may indicate vulnerability to PTSD.
Objective: We aimed to investigate the effects of Korean red ginseng (KRG) supplementation on gray matter volume of the human brain which could be related to cognitive enhancing effects of KRG. Methods: In this randomized, double-blind, placebo-controlled study, 51 healthy individuals were assigned to receive either KRG (1000 mg/day, n ¼ 26) or placebo (n ¼ 25) for 8 weeks. Gray matter volume of the whole brain was measured using voxel-based morphometry based on high-resolution T1-weighted magnetic resonance images acquired at baseline and week 8. The standardized composite cognitive scores of executive function, attention, and memory were also evaluated at baseline and week 8. Changes in gray matter volume as well as the composite cognitive scores were compared between the KRG and placebo groups. Results: Following 8 weeks of KRG supplementation, the gray matter volume of the left parahippocampal gyrus increased significantly in the KRG group, relative to the placebo group (p for interaction < 0.001). The KRG group also showed greater magnitude of enhancement in the composite cognitive scores relative to the placebo group (p for interaction ¼ 0.03). Conclusions: Gray matter volume increase in the parahippocampus may be a key neural change as induced by KRG supplementation, which could be associated with cognitive enhancement. K E Y W O R D S brain magnetic resonance imaging, cognition, gray matter, Korean red ginseng, voxel-based morphometry 1 | INTRODUCTION Korean red ginseng (KRG), also known as Panax ginseng, is a medicinal plant that has been used as a safe dietary supplement (Choi, 2008). Having ginsenosides as the major active ingredients, KRG has been reported to be potentially beneficial to a wide range of symptoms including physical, psychological, and cognitive dysfunctions
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.