The problem of parameters identification of the bursts of the medium conductivity coefficient according to the tomography of the applied quasipotentials is considered. The method of image reconstruction is suggested, according to which the problem of analysis is reduced to the application of numerical methods of quasiconformal mappings, and the problem of synthesis is reduced to the solving the problem of parametric identification. The results of numerical experiments are presented and their analysis is carried out.
A numerical method of quasiconformal mappings for solving the coefficient problems of finding eigenvalues of the conductivity tensor having information about its directions in an anisotropic medium using applied quasipotential tomographic data is generalized. The corresponding algorithm is based on the alternate solving of problems on quasiconformal mappings and parameter identification. The results of numerical experiments of imitative restoration of environment structure are presented.
A method for identifying parameters of the conductivity coefficient of objects is generalized for the case of reconstructing an image of a part of a soil massif from the tomography data of the applied quasipotentials. In this case, without diminishing the generality, the reconstruction of the image is carried out in a fragment of a rectangular medium with local bursts of homogeneity present in it. The general idea of the corresponding algorithm consists in the sequential iterative solution of problems on quasiconformal mappings and identification of the parameters of the conductivity coefficient, with an insufficient amount of data on the values of the flow functions on the «inaccessible» part of the boundary. The image was reconstructed according to the data obtained using a full-range gradient array. The developed approach, in comparison with the existing ones, has a number of advantages that make it possible to increase the accuracy of identification of the conductivity coefficient. Namely, it provides an increase, in a qualitative sense, in the amount of input data, allows avoiding the use of Dirac delta functions when modeling areas of application of potentials and sufficiently flexibly take into account the mathematical aspects of the implementation of a quasiconformal mapping of a finite fragment of a half-plane onto a parametric polygon (domain of a complex quasipotential). The solution of the corresponding problem, in particular, occurs not in a single (fixed) investigated fragment of a rectangular soil massif, but in a number of smaller subdomains of the same shape, in the proposed optimal sequence. This saves machine time significantly. The prospects for further practical implementation of the proposed method follow from its ability to give an approximate result with relatively low costs (financial, time
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.