The object of research is a screen-exhaust device in the TV3-117 engine of the Mi-8 helicopter. Investigated problem: The problem of equalizing the flow in the exhaust nozzle is solved. As a result of the numerical study, the total pressure losses are calculated and the flow structures in the structural elements of the exhaust nozzle and the screen-exhaust device (SED) are analyzed. Main scientific results: Obtained Gas-dynamic parameters of the flow in the SED flow path are obtained and the verification of injection processes between the working circuits along the path in the SED design is done. Numerical modeling of gas flows in the SED flow path makes it possible to study in detail the characteristics of the flow at any of its points, as well as to determine the values of hydrodynamic losses associated with the formation of a boundary layer and the emergence of separation zones. A constructive method for leveling the gas-dynamic flow is proposed by installing a blade in the form of an aerodynamic profile in a standard engine exhaust nozzle. Two variants of engine nozzles are investigated under the same boundary conditions using a standard exhaust nozzle with and without a blade. The influence of uneven flow in the exhaust nozzle on the nature of the flow in the SED is shown. An insignificant equalization of the flow in the exhaust nozzle using the installed blade led to a decrease in the total pressure loss in the SED by more than 1 %. The area of practical use of the research results: The results of calculations and modeling can be used for computational and experimental studies aimed at improving the flow path of the exhaust nozzle and the screen-exhaust device by the developers of new military aviation equipment or when modernizing the existing helicopter fleet. Scope of application of the innovative technological product: a new screen-exhaust device has been proposed for left and right TV3-117 engines of all types, which can be installed on the Mi-8MSB-V, Mi-8MT, Mi-14, Mi-24 helicopters. It is competitive and has significantly higher technical and economic indicators compared to known analogues.
Використання екранно-вихлопних пристроїв (ЕВП) в газотурбінних двигунах (ГТД) вертольотів є одним із ефективних засобів пасивного захисту 2. Об'єкт дослідження та його технологічний аудит Об'єктом досліджень є комплект екранно-вихлопних пристроїв (ЕВП) у складі вертольоту Мі-8МСБ-В (український варіант модернізації радянського багатоцільового вертольота Мі-8, розроблений акціонерним товариством «Мотор Січ», м. Запоріжжя, Україна).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.