Chitinous scaffolds isolated from the skeleton of marine sponge Aplysina cauliformis were used as a template for the in vitro formation of zirconium dioxide nanophase from ammonium zirconium(IV) carbonate (AZC) under extreme conditions (150 degrees C). These novel zirconia-chitin based composites were prepared for the first time using hydrothermal synthesis, and were thoroughly characterized using a plethora of analytical methods. The thermostability of the chitinous 3D matrix makes it ideal for use in the hydrothermal synthesis of monoclinic nanostructured zirconium dioxide from precursors like AZC. These zirconium-chitin composites have a high potential for use in a broad range of applications ranging from synthetic catalysis to biocompatible materials for bone and dental repair. The synthetic methods presented in this work show an attractive route for producing monoclinic zirconium dioxide on a 3D biocompatible scaffold with ease
The defect structure of γ-Al2O3 produced from boehmite is described with the aid of antiphase and rotational boundaries. The type of structure defects is deduced from the selected-area electron-diffraction patterns. The defect density is quantified from the anisotropic broadening of diffraction lines in powder X-ray diffraction patterns using a computer routine based on the Debye scattering equation.
The design of new composite materials using extreme biomimetics is of crucial importance for bioinspired materials science. Further progress in research and application of these new materials is impossible without understanding the mechanisms of formation, as well as structural features at the molecular and nano‐level. It presents a challenge to obtain a holistic understanding of the mechanisms underlying the interaction of organic and inorganic phases under conditions of harsh chemical reactions for biopolymers. Yet, an understanding of these mechanisms can lead to the development of unusual—but functional—hybrid materials. In this work, a key way of designing centimeter‐scale macroporous 3D composites, using renewable marine biopolymer spongin and a model industrial solution that simulates the highly toxic copper‐containing waste generated in the production of printed circuit boards worldwide, is proposed. A new spongin–atacamite composite material is developed and its structure is confirmed using neutron diffraction, X‐ray diffraction, high‐resolution transmission electron microscopy/selected‐area electron diffraction, X‐ray photoelectron spectroscopy, near‐edge X‐ray absorption fine structure spectroscopy, and electron paramagnetic resonance spectroscopy. The formation mechanism for this material is also proposed. This study provides experimental evidence suggesting multifunctional applicability of the designed composite in the development of 3D constructed sensors, catalysts, and antibacterial filter systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.