The technological method in the field of foundry production is described, which combines additive manufacturing (AM) of disposable foundry polymer patterns with waste polystyrene (EPS) waste disposal. It was created to switch to the method of Lost Foam casting on gasified patterns (LFC), from the current method of casting on printed patterns of fired. The latter method is used because modern printed patterns have a high density and ash content, which degrades the quality of metal castings when used for LFC. EPS disposal gives an environmental effect, and AM patterns are an example of the spread of digitalization and automation of foundry production. Examples of EPS disposal, examples of castings after firing additively manufactured patterns and the ash residue, consisting of carbon, found in the working cavities of molds after firing such patterns are described. Examples of printing patterns with a cellular core and a ventilation channel are shown, an unsuccessful example of aluminum casting by the LFC method in a vacuumed sand mold, as well as an example of a 3D printer for printing using crushed plastic or plastic granules. The developed method of printing one-time foundry patterns for gasification in sand foundry mold corresponds to the trend of spreading AM in foundry production. If the specific weight of the printed pattern is too high, then new LFC methods are used with the removal of excess gases from the gasification of the pattern through the ventilation duct in the pattern and tubular evaporation outside the mold and their oxidation, in particular by our method. Such neutralization of gaseous waste at LFC rightly complements the utilization of EPS solid waste as a raw material for AM foundry patterns, together these methods give a synergistic effect on environmental protection, improving the working conditions of foundries and reducing the cost of cast products while improving its quality. Keywords: Lost Foam casting; gasified patterns; 3D printing; additive manufacturing; one-time patterns; burning patterns; expanded polystyrene; disposal of polymer waste.
Використання технології 3D-друку або адитивного виробництва (АВ) все більше поширюється у промисловому виробництві. Концепція найбільш простого і низьковитратного впровадження 3D-друку в вітчизняне ливарне виробництво, яку найбільш нескладно і вигідно реалізувати через технологію лиття за моделями, що газифікуються (ЛГМ), потребує створення ряду підпорядкованих цій концепції технологій, що стануть передумовами такого впровадження. Дослідження присвячене розробці способів швидкого автоматизованого виробництва разових полімерних моделей з показниками, близькими до традиційних моделей з пінополістиролу (ППС), використовуючи 3D-друк на широко поширених нескладних принтерах. Описано появу на світовому ринку легких полімерних і утворюючих піну ниток, що спінюються при підвищених температурах, а шари традиційної щільності утворюють при більш низьких температурах друку. Наведено приклади друкованих виробів з піноматеріалів. Такі пінопластові та легкі матеріали для 3D-друку, як нитки, так і гранули, поки знаходяться в «зародковому» стані, щоб їх впроваджувати для ЛГМ. Нами розроблено і патентується матеріал для разової моделі та спосіб її друку з подрібнених відходів ППС з метою наблизити показники виробів з нього, до таких властивостей відпрацьованих традиційних моделей з ППС. Запропоновано концепцію формування за друкованою разовою моделлю, яку «перетворюють» в оболонкову, а ливарна форма при цьому стає подібною до форми при вакумно-плівковій формовці. Застосування традиційних для ВПФ випорів дає можливість виводу надлишків газу крізь них при заливанні металом і газифікації оболонкової моделі в разі, якщо вакууму форми буде недостатньо, щоб відсмоктати ці гази в пісок форми. Також розроблено метод застосування «в парі» 3D-принтера і 3D-фрезера для друку і видалення «надлишків» друку. А позиціонування і міцна фіксація в вакуумованому піску, як у кондукторі, виробів складної геометрії придатне для механічної обробки будь-яких деталей з металу чи пластику.
In mechanical engineering, the main parameters that determine the use of materials are their operational characteristics, which are determined by mechanical properties. The material must meet the specified parameters of strength, hardness, elasticity and viscosity. Only the method of determining the hardness of the material, in addition to physical methods, allows conducting research without making special samples without destroying the part. At the same time, the factor that the rest of the properties are indirectly related to the hardness parameter is taken into account. The classic definition of the hardness of materials as a mechanical property is the ability of a solid body to resist the penetration of another harder body into it. Based on this, the hardness is characterized by the value, that is, the volume by which a harder body penetrates the material under study. Currently, there are extremely many methods for determining hardness, but all of them are side effects. Even the most standardized methods take into account the area of interaction between the indenter and the test material, which is highly dependent on the geometry of the indenter and the load. The volumetric characteristic of hardness, which is proposed in this work, takes into account both the load and the geometry of the indenter. In modern metallurgy, it is customary to compare the units of all hardness measurement methods for their practical comparison, depending on the scale factor, by converting their values to such generally accepted methods as Brinell, Rockwell, or Vickers. For research, the authors used the developed methodology, which involves the use of a single characteristic - volume hardness of materials. This characteristic does not require the use of transitional tables of hardness units obtained by different methods. Volumetric hardness, unlike other methods, really corresponds to the physical content of the hardness characteristic, as the ability of a material to resist the incorporation of another, harder material into it. It is characterized by the displaced specific volume. Mathematically, it is characterized by the effort required to displace one cubic millimeter of a substance. The purpose of this work was a visual demonstration of the possibility of applying the concept of volume hardness as a characteristic that corresponds to the physical meaning of this property of materials. Show that the proposed technique makes it possible to compare the hardness of materials with a wide range of properties. To ensure a wide range of research, materials with different internal structures were selected, depending on the chemical composition of the alloys, as well as the mode of chemical and thermal treatment. Comparisons of the results obtained by different methods of hardness research were made and it was shown that the bulk hardness can clearly characterize and generalize these results. Keywords: volumetric hardness, mechanical properties, complex alloying, steel, heat treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.