Experimental results for homogeneous nucleation of water droplets in the presence of argon, nitrogen and, for the first time, nitrous oxide, as carrier gases are reported. The main objective of the study was to investigate the effects of different carrier gases on the nucleation rate. These gases differ in the number of atoms comprising the molecule, which affects the expansion ratio required to reach the target nucleation temperature. The experiments cover nucleation temperatures from 220 to 260 K, nucleation pressures from 40 to 73 kPa, supersaturations of 6.5 to 20, and nucleation rates ranging from about 4×105 to 4×109 cm-3 s-1. The new data obtained with a modernized expansion chamber utilizing the nucleation pulse method show good agreement with available literature data. Another important point of our work is the application of real gas corrections to calculate the nucleation temperature and supersaturation. The results show that the influence of carrier gases on nucleation rate in the investigated pressure range is modest (less than a factor of 7), while without the real gas correction the apparent effect of carrier gas is significant with differences as high as factor of 90.
Nucleation is an integral part of phase transitions and plays an important role in technology. The control of nucleation in devices such as turbines, rocket and jet engines, wind tunnels, and combustion processes is key to achieving efficient, ecologically sound operation. Our paper presents information about a modernized experimental setup used for homogeneous water nucleation research. The main goal of the study is an analysis of the influence of carrier gas on homogeneous nucleation. The experimental setup based on an expansion chamber has been used for research of homogeneous nucleation over several decades and has undergone various technical improvements. In the Institute of Thermomechanics, the setup was been completely disassembled and cleaned. Pressure transducers, laser, and the data acquisition system have been replaced with modern parts. After that, the chamber was assembled, and thoroughly tested and calibrated. Our investigations were carried with argon and nitrogen as carrier gases in a range of nucleation temperatures 220 – 260 K, pressure range 80-150 kPa, at several concentrations of water vapour. The results thus obtained are consistent with literature data. The findings suggest that this experimental approach is useful for homogeneous water nucleation research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.