Chemical transformations on the surface of commercially available 3C-SiC nanoparticles were studied by means of FTIR, XPS, and temperature-programmed desorption mass spectrometry methods. Thermal oxidation of SiC NPs resulted in the formation of a hydroxylated SiO surface layer with CSi-H and CH groups over the SiO/SiC interface. Controllable oxidation followed by oxide dissolution in HF or KOH solution allowed the SiC NPs size tuning from 17 to 9 nm. Oxide-free SiC surfaces, terminated by hydroxyls and CSi-H groups, can be efficiently functionalized by alkenes under thermal or photochemical initiation. Treatment of SiC NPs by HF/HNO mixture produces a carbon-enriched surface layer with carboxylic acid groups susceptible to amide chemistry functionalization. The hydroxylated, carboxylated, and aminated SiC NPs form stable aqueous sols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.