Thyroid follicles, the functional units of the thyroid gland, are delineated by a monolayer of thyrocytes resting on a continuous basement membrane. The developmental mechanisms of folliculogenesis, whereby follicles are formed by the reorganization of a non-structured mass of non-polarized epithelial cells, are largely unknown. Here we show that assembly of the epithelial basement membrane is crucial for folliculogenesis and is controlled by endothelial cell invasion and by BMP-Smad signaling in thyrocytes. Thyroid-specific Smad1 and Smad5 double-knockout (Smad1/5 dKO ) mice displayed growth retardation, hypothyroidism and defective follicular architecture. In Smad1/5 dKO embryonic thyroids, epithelial cells remained associated in large clusters and formed small follicles. Although similar follicular defects are found in Vegfa knockout (Vegfa KO ) thyroids, Smad1/5 dKO thyroids had normal endothelial cell density yet impaired endothelial differentiation. Interestingly, both Vegfa KO and Smad1/5 dKO thyroids displayed impaired basement membrane assembly. Furthermore, conditioned medium (CM) from embryonic endothelial progenitor cells (eEPCs) rescued the folliculogenesis defects of both Smad1/5 dKO and Vegfa KO thyroids. Laminin α1, β1 and γ1, abundantly released by eEPCs into CM, were crucial for folliculogenesis. Thus, epithelial Smad signaling and endothelial cell invasion promote folliculogenesis via assembly of the basement membrane.
The Wnt/β-catenin signaling is essential for various organogenesis and is often implicated during tumorigenesis. Dysregulated β-catenin signaling is associated with the formation of endometrial adenocarcinomas (EACs), which is considered as the common form of endometrial cancer in women. In the current study, we investigate the downstream target of Wnt/β-catenin signaling in the uterine epithelia and the mechanism leading to the formation of endometrial hyperplasia. We report that conditional ablation and activation of β-catenin in the uterine epithelia lead to aberrant epithelial structures and endometrial hyperplasia formation, respectively. We demonstrate that β-catenin regulates Foxa2 with its candidate upstream region for the uterine epithelia. Furthermore, knockdown of Foxa2 leads to defects in cell cycle regulation, suggesting a possible function of Foxa2 in the control of cell proliferation. We also observe that β-catenin and Foxa2 expression levels are augmented in the human specimens of complex atypical endometrial hyperplasia, which is considered to have a greater risk of progression to EACs. Thus, our study indicates that β-catenin regulates Foxa2 expression, and this interaction is possibly essential to control cell cycle progression during endometrial hyperplasia formation. Altogether, the augmented expression levels of β-catenin and Foxa2 are essential features during the formation of endometrial hyperplasia.
(ex3)fl/+ BmprIA fl/fl mice. These results indicate the presence of growth factor signal cross-talk involving β-catenin signaling, which regulates the HF fate.
Digit and interdigit (D/ID) development is one of the important research fields in molecular developmental biology. Interdigital cell death (ICD) is a morphogenetic event which has been considered as an essential process for D/ID formation. Although, some growth factors including Bmp and Fgf signaling can modulate ICD, growth factor crosstalk regulating ICD is poorly understood. Wnt canonical pathway and Bmp signal crosstalk has been considered as the essential growth factor crosstalk in organogenesis. To elucidate the crosstalk to regulate the D/ID formation, we analyzed conditional mutant mice with limb bud ectoderm expressing constitutively activated β-catenin signaling. We showed that modulation of Wnt/β-catenin signal in the limb ectoderm including the AER regulates ID apoptosis. We also demonstrated that Wnt/β-catenin signaling in the ectoderm can positively regulate Fgf8 possibly antagonizing the epithelial derived Bmp signaling. Human birth defects for digit abnormalities have been known to be affected by multiple parameters. Elucidation of the potential mechanisms underlying such D/ID development is an urgent medical issue to be solved. This work would be one of the first studies showing essential growth factor cascades in the D/ID formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.