5-Hydroxytryptamine (5-HT; serotonin) has been implicated in the pathophysiology of migraine, and several drugs with potent 5-HT2 receptor blocking activity (methysergide, pizotifen, cyproheptadine and mianserin) have been recognized as being clinically effective in migraine prophylaxis, although the selective 5-HT2 receptor antagonist ketanserin (the principal agent used to identify 5-HT2 receptor-mediated actions) seems to be ineffective in migraine. Pizotifen is the most widely used 5-HT2 receptor antagonist in migraine prophylaxis, because of its superior efficacy compared with cyproheptadine, and because the incidence and severity of adverse effects with pizotifen is lower compared with methysergide and mianserin. These agents have additional antagonistic effects at histamine H1, muscarinic cholinergic, alpha 1-adrenergic, alpha 2-adrenergic and dopamine receptors, but drugs which are selective for these non-5-HT receptors appear to be of no benefit in migraine. Actions mediated by 5-HT2 receptors which could be of relevance to migraine comprise cranial vasoconstriction, increased cranial capillary permeability and platelet aggregation, and some central nervous system effects and neuroendocrine functions. Although pizotifen, cyproheptadine and mianserin are considered to be relatively specific for 5-HT2 receptors, these agents and methysergide all share a high affinity for 5-HT1C binding sites; ketanserin, however, has little affinity for these sites, thus activation of 5-HT1C receptors may be an important step in the pathogenesis of migraine. It is not yet known which 5-HT1C receptor-mediated actions of 5-HT are relevant to migraine, but some behavioural actions and cranial vasodilatation via release of endothelium-derived relaxing factor may be involved.(ABSTRACT TRUNCATED AT 250 WORDS)
In vitro investigations have identified three major mechanisms which could contribute to the vasodilator action of serotonin (5-hydroxytryptamine, 5-HT): direct vascular smooth muscle relaxation; prejunctional inhibition of noradrenaline release from vascular sympathetic nerve terminals; and release of endothelium-derived relaxing factor (EDRF). In vivo studies have shown that in pig and cat common carotid circulations, rabbit hind-quarter and mesenteric circulations, and rat systemic vasculature, direct vascular smooth muscle relaxation may be the predominant mechanism involved, but the contribution of EDRF release remains to be established. In other circulations in vivo (dog femoral and common carotid), prejunctional inhibition of vascular sympathetic tone is the predominant mechanism responsible for serotonin-induced vasodilatation. All of these actions are mediated by 5-HT1-like receptors, but different subtypes seem to be involved in each of these mechanisms. The prejunctional inhibitory receptor has been the most studied; depending on the tissue, these subtypes may resemble 5-HT1A, 5-HT1B, 5-HT1c or 5-HT1D binding sites, or the contractile receptor in dog saphenous vein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.