Several new C-H activated ruthenium catalysts for Z-selective olefin metathesis have been synthesized. Both the carboxylate ligand and the aryl group of the N-heterocyclic carbene have been altered and the resulting catalysts were evaluated using a range of metathesis reactions. Substitution of bidentate with monodentate X-type ligands led to a severe attenuation of metathesis activity and selectivity, while minor differences were observed between bidentate ligands within the same family (e.g. carboxylates). The use of nitrato-type ligands, in place of carboxylates, afforded a significant improvement in metathesis activity and selectivity. With these catalysts, turnover numbers approaching 1000 were possible for a variety of cross-metathesis reactions, including the synthesis of industrially-relevant products.
The mechanism and origins of Z-selectivity in olefin metathesis with chelated Ru catalysts were explored using density functional theory. The olefin approaches from the "side" position of the chelated Ru catalysts, in contrast to reactions with previous unchelated Ru catalysts that favor the bottom-bound pathway. Steric repulsions between the substituents on the olefin and the N-substituent on the N-heterocyclic carbene ligand lead to highly selective formation of the Z product.
Reliable early-stage
detection of foodborne pathogens is a global
public health challenge that requires new and improved sensing strategies.
Here, we demonstrate that dynamically reconfigurable fluorescent double
emulsions can function as highly responsive optical sensors for the
rapid detection of carbohydrates fructose, glucose, mannose, and mannan,
which are involved in many biological and pathogenic phenomena. The
proposed detection strategy relies on reversible reactions between
boronic acid surfactants and carbohydrates at the hydrocarbon/water
interface leading to a dynamic reconfiguration of the droplet morphology,
which alters the angular distribution of the droplet’s fluorescent
light emission. We exploit this unique chemical–morphological–optical
coupling to detect
Salmonella enterica
, a type of
bacteria with a well-known binding affinity for mannose. We further
demonstrate an oriented immobilization of antibodies at the droplet
interface to permit higher selectivity. Our demonstrations yield a
new, inexpensive, robust, and generalizable sensing strategy that
can help to facilitate the early detection of foodborne pathogens.
A novel chelated ruthenium-based metathesis catalyst bearing an N-2,6-diisopropylphenyl group is reported and displays near-perfect selectivity for the Z-olefin (>95%), as well as unparalleled TONs of up to 7400, in a variety of homodimerization and industrially relevant metathesis reactions. This derivative and other new catalytically-active species were synthesized using an improved method employing sodium carboxylates to induce the salt metathesis and C-H activation of these chelated complexes. All of these new ruthenium-based catalysts are highly Z-selective in the homodimerization of terminal olefins.
The first report of Z-selective macrocyclizations using a ruthenium-based metathesis catalyst is described. Selectivity for Z-macrocycles is consistently high for a diverse set of substrates with a variety of functional groups and ring sizes. The same catalyst was also employed for the Z-selective ethenolysis of a mixture of E and Z macrocycles, providing the pure E-isomer. Notably, only an atmospheric pressure of ethylene was required. These methodologies were successfully applied to the construction of several olfactory macrocycles, as well as the formal total synthesis of the cytotoxic alkaloid motuporamine C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.