The Finnish Disease Heritage Database (FinDis) (http://findis.org) was originally published in 2004 as a centralized information resource for rare monogenic diseases enriched in the Finnish population. The FinDis database originally contained 405 causative variants for 30 diseases. At the time, the FinDis database was a comprehensive collection of data, but since 1994, a large amount of new information has emerged, making the necessity to update the database evident. We collected information and updated the database to contain genes and causative variants for 35 diseases, including six more genes and more than 1,400 additional disease-causing variants. Information for causative variants for each gene is collected under the LOVD 3.0 platform, enabling easy updating. The FinDis portal provides a centralized resource and user interface to link information on each disease and gene with variant data in the LOVD 3.0 platform. The software written to achieve this has been open-sourced and made available on GitHub (http://github.com/findis-db), allowing biomedical institutions in other countries to present their national data in a similar way, and to both contribute to, and benefit from, standardized variation data. The updated FinDis portal provides a unique resource to assist patient diagnosis, research, and the development of new cures.
Genetic and epidemiological research increasingly employs large collections of phenotypic and molecular observation data from high quality human and model organism samples. Standardization efforts have produced a few simple formats for exchange of these various data, but a lightweight and convenient data representation scheme for all data modalities does not exist, hindering successful data integration, such as assignment of mouse models to orphan diseases and phenotypic clustering for pathways. We report a unified system to integrate and compare observation data across experimental projects, disease databases, and clinical biobanks. The core object model (Observ-OM) comprises only four basic concepts to represent any kind of observation: Targets, Features, Protocols (and their Applications), and Values. An easy-to-use file format (Observ-TAB) employs Excel to represent individual and aggregate data in straightforward spreadsheets. The systems have been tested successfully on human biobank, genome-wide association studies, quantitative trait loci, model organism, and patient registry data using the MOL-GENIS platform to quickly setup custom data portals. Our system will dramatically lower the barrier for future data sharing and facilitate integrated search across panels Additional Supporting Information may be found in the online version of this article.
BackgroundSharing of data about variation and the associated phenotypes is a critical need, yet variant information can be arbitrarily complex, making a single standard vocabulary elusive and re-formatting difficult. Complex standards have proven too time-consuming to implement.ResultsThe GEN2PHEN project addressed these difficulties by developing a comprehensive data model for capturing biomedical observations, Observ-OM, and building the VarioML format around it. VarioML pairs a simplified open specification for describing variants, with a toolkit for adapting the specification into one's own research workflow. Straightforward variant data can be captured, federated, and exchanged with no overhead; more complex data can be described, without loss of compatibility. The open specification enables push-button submission to gene variant databases (LSDBs) e.g., the Leiden Open Variation Database, using the Cafe Variome data publishing service, while VarioML bidirectionally transforms data between XML and web-application code formats, opening up new possibilities for open source web applications building on shared data. A Java implementation toolkit makes VarioML easily integrated into biomedical applications. VarioML is designed primarily for LSDB data submission and transfer scenarios, but can also be used as a standard variation data format for JSON and XML document databases and user interface components.ConclusionsVarioML is a set of tools and practices improving the availability, quality, and comprehensibility of human variation information. It enables researchers, diagnostic laboratories, and clinics to share that information with ease, clarity, and without ambiguity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.