The Ehlers–Danlos syndromes (EDS) are a heterogeneous group of heritable connective tissue disorders characterized by joint hypermobility, skin extensibility, and tissue fragility. This communication briefly reports upon the neurological manifestations that arise including the weakness of the ligaments of the craniocervical junction and spine, early disc degeneration, and the weakness of the epineurium and perineurium surrounding peripheral nerves. Entrapment, deformation, and biophysical deformative stresses exerted upon the nervous system may alter gene expression, neuronal function and phenotypic expression. This report also discusses increased prevalence of migraine, idiopathic intracranial hypertension, Tarlov cysts, tethered cord syndrome, and dystonia, where associations with EDS have been anecdotally reported, but where epidemiological evidence is not yet available. Chiari Malformation Type I (CMI) has been reported to be a comorbid condition to EDS, and may be complicated by craniocervical instability or basilar invagination. Motor delay, headache, and quadriparesis have been attributed to ligamentous laxity and instability at the atlanto‐occipital and atlantoaxial joints, which may complicate all forms of EDS. Discopathy and early degenerative spondylotic disease manifest by spinal segmental instability and kyphosis, rendering EDS patients prone to mechanical pain, and myelopathy. Musculoskeletal pain starts early, is chronic and debilitating, and the neuromuscular disease of EDS manifests symptomatically with weakness, myalgia, easy fatigability, limited walking, reduction of vibration sense, and mild impairment of mobility and daily activities. Consensus criteria and clinical practice guidelines, based upon stronger epidemiological and pathophysiological evidence, are needed to refine diagnosis and treatment of the various neurological and spinal manifestations of EDS. © 2017 Wiley Periodicals, Inc.
Brief cognitive screening measures, if properly constructed, may be an effective means of identifying children with silent cerebral infarct. Future prospective studies should be pursued to assess the utility of cognitive screening for silent cerebral infarcts in SCD.
A great deal of literature has drawn attention to the “complex Chiari,” wherein the presence of instability or ventral brainstem compression prompts consideration for addressing both concerns at the time of surgery. This report addresses the clinical and radiological features and surgical outcomes in a consecutive series of subjects with hereditary connective tissue disorders (HCTD) and Chiari malformation. In 2011 and 2012, 22 consecutive patients with cervical medullary syndrome and geneticist-confirmed hereditary connective tissue disorder (HCTD), with Chiari malformation (type 1 or 0) and kyphotic clivo-axial angle (CXA) enrolled in the IRB-approved study (IRB# 10-036-06: GBMC). Two subjects were excluded on the basis of previous cranio-spinal fusion or unrelated medical issues. Symptoms, patient satisfaction, and work status were assessed by a third-party questionnaire, pain by visual analog scale (0–10/10), neurologic exams by neurosurgeon, function by Karnofsky performance scale (KPS). Pre- and post-operative radiological measurements of clivo-axial angle (CXA), the Grabb-Mapstone-Oakes measurement, and Harris measurements were made independently by neuroradiologist, with pre- and post-operative imaging (MRI and CT), 10/20 with weight-bearing, flexion, and extension MRI. All subjects underwent open reduction, stabilization occiput to C2, and fusion with rib autograft. There was 100% follow-up (20/20) at 2 and 5 years. Patients were satisfied with the surgery and would do it again given the same circumstances (100%). Statistically significant improvement was seen with headache (8.2/10 pre-op to 4.5/10 post-op, p < 0.001, vertigo (92%), imbalance (82%), dysarthria (80%), dizziness (70%), memory problems (69%), walking problems (69%), function (KPS) (p < 0.001). Neurological deficits improved in all subjects. The CXA average improved from 127° to 148° (p < 0.001). The Grabb-Oakes and Harris measurements returned to normal. Fusion occurred in 100%. There were no significant differences between the 2- and 5-year period. Two patients returned to surgery for a superficial wound infections, and two required transfusion. All patients who had rib harvests had pain related that procedure (3/10), which abated by 5 years. The results support the literature, that open reduction of the kyphotic CXA to lessen ventral brainstem deformity, and fusion/stabilization to restore stability in patients with HCTD is feasible, associated with a low surgical morbidity, and results in enduring improvement in pain and function. Rib harvest resulted in pain for several years in almost all subjects.
There is growing recognition of the kyphotic clivo-axial angle (CXA) as an index of risk of brainstem deformity and craniocervical instability. This review of literature and prospective pilot study is the first to address the potential correlation between correction of the pathological CXA and postoperative clinical outcome. The CXA is a useful sentinel to alert the radiologist and surgeon to the possibility of brainstem deformity or instability. Ten adult subjects with ventral brainstem compression, radiographically manifest as a kyphotic CXA, underwent correction of deformity (normalization of the CXA) prior to fusion and occipito-cervical stabilization. The subjects were assessed preoperatively and at one, three, six, and twelve months after surgery, using established clinical metrics: the visual analog pain scale (VAS), American Spinal InjuryAssociation Impairment Scale (ASIA), Oswestry Neck Disability Index, SF 36, and Karnofsky Index. Parametric and non-parametric statistical tests were performed to correlate clinical outcome with CXA. No major complications were observed. Two patients showed pedicle screws adjacent to but not deforming the vertebral artery on post-operative CT scan. All clinical metrics showed statistically significant improvement. Mean CXA was normalized from 135.8° to 163.7°. Correction of abnormal CXA correlated with statistically significant clinical improvement in this cohort of patients. The study supports the thesis that the CXA maybe an important metric for predicting the risk of brainstem and upper spinal cord deformation. Further study is feasible and warranted.
Neurosurgical management of birth-related brachial plexus palsy involves observing the patient for a period of several months. Operative intervention is usually undertaken at 3 to 6 months of age or more in infants who have shown little or no improvement in affected muscle groups. Ancillary tests such as electromyography and nerve conduction studies are occasionally useful. No radiological study has been consistently helpful in operative planning, except for contrast computerized tomography (CT) myelography, which requires general anesthesia in infants. This is because the infant's small size exceeds the functional resolution of the imaging modalities. This report describes the use of a special sequence of magnetic resonance (MR) imaging entitled "fast spin echo" (FSE-MR). Unlike CT myelography, this technique provides high-speed noninvasive imaging that allows clinicians to evaluate preganglionic nerve root injuries without the use of general anesthesia and lumbar puncture. The utility of this technique is illustrated in three cases, two involving either infraclavicular exploration or a combination of infraclavicular and supraclavicular exposure based on FSE-MR findings. The FSE-MR imaging offers an excellent alternative to contrast CT myelography in evaluation of infants with birth-related brachial plexus injuries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.