Use of 3D three-dimensional US showed that alpha angles measured at routine 2D two-dimensional US of the hip can vary substantially between 2D two-dimensional scans solely because of changes in probe positioning. Not only could normal hips appear dysplastic, but dysplastic hips also could have normal alpha angles. Three-dimensional US can display the full acetabular shape, which might improve DDH developmental dysplasia of the hip assessment accuracy.
Developmental dysplasia of the hip (DDH) is a common condition predisposing to osteoarthritis (OA). Especially since DDH is best identified and treated in infancy before bones ossify, there is surprisingly a near-complete absence of literature examining mechanical behavior of infant dysplastic hips. We sought to identify current practice in finite element modeling (FEM) of DDH, to inform future modeling of infant dysplastic hips. We performed multi-database systematic review using PRISMA criteria. Abstracts (n = 126) fulfilling inclusion criteria were screened for methodological quality, and results were analyzed and summarized for eligible articles (n = 12). The majority of the studies modeled human adult dysplastic hips. Two studies focused on etiology of DDH through simulating mechanobiological growth of prenatal hips; we found no FEM-based studies in infants or children. Finite element models used either patient-specific geometry or idealized average geometry. Diversities in choice of material properties, boundary conditions, and loading scenarios were found in the finite-element models. FEM of adult dysplastic hips demonstrated generally smaller cartilage contact area in dysplastic hips than in normal joints. Contact pressure (CP) may be higher or lower in dysplastic hips depending on joint geometry and mechanical contribution of labrum (Lb). FEM of mechanobiological growth of prenatal hip joints revealed evidence for effects of the joint mechanical environment on formation of coxa valga, asymmetrically shallow acetabulum and malformed femoral head associated with DDH. Future modeling informed by the results of this review may yield valuable insights into optimal treatment of DDH, and into how and why OA develops early in DDH.
Purpose To validate accuracy of diagnosis of developmental dysplasia of the hip (DDH) from geometric properties of acetabular shape extracted from three-dimensional (3D) ultrasonography (US). Materials and Methods In this retrospective multi-institutional study, 3D US was added to conventional two-dimensional (2D) US of 1728 infants (mean age, 67 days; age range, 3-238 days) evaluated for DDH from January 2013 to December 2016. Clinical diagnosis after more than 6 months follow-up was normal (n = 1347), borderline (Graf IIa, later normalizing spontaneously; n = 140) or dysplastic (Graf IIb or higher, n = 241). Custom software accessible through the institution's research portal automatically calculated indexes including 3D posterior and anterior alpha angle and osculating circle radius from hip surface models generated with less than 1 minute of user input. Logistic regression predicted clinical diagnosis (normal = 0, dysplastic = 1) from 3D indexes (ie, age and sex). Output represented probability of hip dysplasia from 0 to 1 (output: >0.9, dysplastic; 0.11-0.89, borderline; <0.1, normal). Software can be accessed through the research portal. Results Area under the receiver operating characteristic curve was equivalently high for 3D US indexes and 2D US alpha angle (0.996 vs 0.987). Three-dimensional US helped to correctly categorize 97.5% (235 of 241) dysplastic and 99.4% (1339 of 1347) normal hips. No dysplastic hips were categorized as normal. Correct diagnosis was provided at initial 3D US scan in 69.3% (97 of 140) of the studies diagnosed as borderline at initial 2D US scans. Conclusion Automatically calculated 3D indexes of acetabular shape performed equivalently to high-quality 2D US scans at tertiary medical centers to help diagnose DDH. Three-dimensional US reduced the number of borderline studies requiring follow-up imaging by over two-thirds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.