Transcranial alternating current stimulation (tACS) is a noninvasive neuromodulation method which has been shown to modulate hearing, motor, cognitive and memory function. However, the mechanisms underpinning these findings are controversial, as studies show that the current reaching the cortex may not be strong enough to entrain neural activity. Here, we propose a new hypothesis to reconcile these opposing results: tACS effects are caused by transcutaneous stimulation of peripheral nerves in the skin and not transcranial stimulation of cortical neurons. Rhythmic activity from peripheral nerves then entrains cortical neurons. A series of experiments in rats and humans isolated the transcranial and transcutaneous mechanisms and showed that the reported effects of tACS on the motor system can be caused by transcutaneous stimulation of peripheral nerves. Whether or not the transcutaneous mechanism will generalize to tACS effects on other systems is debatable but should be investigated.
Frequency selectivity in the inner ear is fundamental to hearing and is traditionally thought to be similar across mammals. Although direct measurements are not possible in humans, estimates of frequency tuning based on noninvasive recordings of sound evoked from the cochlea (otoacoustic emissions) have suggested substantially sharper tuning in humans but remain controversial. We report measurements of frequency tuning in macaque monkeys, OldWorld primates phylogenetically closer to humans than the laboratory animals often taken as models of human hearing (e.g., cats, guinea pigs, chinchillas). We find that measurements of tuning obtained directly from individual auditory-nerve fibers and indirectly using otoacoustic emissions both indicate that at characteristic frequencies above about 500 Hz, peripheral frequency selectivity in macaques is significantly sharper than in these common laboratory animals, matching that inferred for humans above 4-5 kHz. Compared with the macaque, the human otoacoustic estimates thus appear neither prohibitively sharp nor exceptional. Our results validate the use of otoacoustic emissions for noninvasive measurement of cochlear tuning and corroborate the finding of sharp tuning in humans. The results have important implications for understanding the mechanical and neural coding of sound in the human cochlea, and thus for developing strategies to compensate for the degradation of tuning in the hearing-impaired.auditory filters | comparative hearing S ound waveforms consist of pressure fluctuations in time and space. In the process of transducing mechanical vibrations into neural signals, the cochlea performs a mechanical frequency analysis that decomposes sounds into constituent frequencies (1, 2). The frequency tuning of the cochlear filters plays a critical role in the ability to distinguish and segregate different sounds perceptually. For example, sounds that radiate from different sources superpose in the air, and are thus "mixed up" before striking the eardrums. Based on the output of the cochlear filters, and by comparing responses from the two ears, the nervous system is capable of disentangling the various sounds, grouping related frequency components to identify auditory objects and localize their sources in space (3). The critical role of peripheral frequency selectivity is perhaps best illustrated by the consequences of damage to the inner ear, which typically leads to a degradation of the cochlear filters. The loss of sharp filtering results in an impaired ability to detect signals in noise and to separate different sounds (4). Frequency selectivity is therefore crucial to everyday human communication.The study of the cochlea is hampered by its fragility and inaccessibility. Direct measurements of mechanical or neural frequency tuning in healthy cochleae are only possible in laboratory animals. To date, measurements of the mechanical vibration of the cochlea's basilar membrane have been largely restricted to the basal high-frequency end of the cochlea, where surgical acce...
The medial nucleus of the trapezoid body (MNTB) receives excitatory input from giant presynaptic terminals, the calyces of Held. The MNTB functions as a sign inverter giving inhibitory input to the lateral and medial superior olive, where its input is important in the generation of binaural sensitivity to cues for sound localization. Extracellular recordings from MNTB neurons show complex spikes consisting of a prepotential, thought to reflect synaptic activation, followed by a postsynaptic action potential. This makes the synapse ideal to study synaptic transmission in vivo because presynaptic and postsynaptic activity can be monitored with a single electrode. Recent in vivo and in vitro studies have observed isolated prepotentials in the MNTB suggesting that, under certain stimulus conditions, synaptic transmission fails. We investigated synaptic transmission at the calyx of Held in the MNTB of the adult cat and concluded that synaptic transmission was completely secure in terms of rate of transmitted spikes. However, synaptic transmission was found to be less secure in terms of timing. With increasing spike rate, the synaptic delay showed an increase of up to 100 s, as well as a decrease in amplitude of the action potential. This variability in delay is of a surprisingly high magnitude given the hypothesized role of these binaural circuits in sound localization and given the fact that this is one of the largest synapses in the mammalian brain.
a b s t r a c tRecent evidence suggests that late auditory evoked potentials (LAEP) provide a useful objective metric of performance in cochlear implant (CI) subjects. However, the CI produces a large electrical artifact that contaminates LAEP recordings and confounds their interpretation. Independent component analysis (ICA) has been used in combination with multi-channel recordings to effectively remove the artifact. The applicability of the ICA approach is limited when only single channel data are needed or available, as is often the case in both clinical and research settings. Here we developed a single-channel, high sample rate (125 kHz), and high bandwidth (0e100 kHz) acquisition system to reduce the CI stimulation artifact. We identified two different artifacts in the recording: 1) a high frequency artifact reflecting the stimulation pulse rate, and 2) a direct current (DC, or pedestal) artifact that showed a non-linear time varying relationship to pulse amplitude. This relationship was well described by a bivariate polynomial. The high frequency artifact was completely attenuated by a 35 Hz low-pass filter for all subjects (n ¼ 22). The DC artifact could be caused by an impedance mismatch. For 27% of subjects tested, no DC artifact was observed when electrode impedances were balanced to within 1 kU. For the remaining 73% of subjects, the pulse amplitude was used to estimate and then attenuate the DC artifact. Where measurements of pulse amplitude were not available (as with standard low sample rate systems), the DC artifact could be estimated from the stimulus envelope. The present artifact removal approach allows accurate measurement of LAEPs from CI subjects from single channel recordings, increasing their feasibility and utility as an accessible objective measure of CI function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.