The purpose of this work was to investigate the use of the Varian Portal Dosimetry application in conjunction with in vivo megavoltage portal images on a Varian Halcyon O-ring type linear accelerator as an in vivo dosimetry constancy (IVDc) tool for pelvis and head/neck patients receiving VMAT treatments. Sensitivity testing was conducted on phantoms with varying thicknesses (0.2 cm-1.0 cm) using static and modulated fields. A cohort of 96 portal dose images across eight patients was then compared with PTV metrics derived from daily CBCT image based treatment plan re-calculations to determine whether the IVDc tool could detect gross inter-fraction anatomical changes. A final cohort of 315 portal dose images across 22 patients was then assessed to demonstrate the application of IVDc tool. The IVDc tool, using 2%/2 mm criteria, detected all phantom thickness changes of 1.0 cm, some phantom thickness changes of 0.5 cm, and no changes of 0.2 cm. For the cohort of 96 results, a IVDc passing criteria of 95% (2%, 2 mm) was able to identify all cases that had PTV metric changes of 2% or more. Using the IVDc tool on the cohort of 315 results, and the IVDc passing criteria of 95%, resulted in 74 IVDc failures. A simple, easy to implement, methodology has been presented that is capable of detecting gross inter-fraction changes in patient geometry on the Varian Halcyon O-ring linac linear accelerator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.