Portable power sources have attracted increasing interest and attention, with a focus on the reduction of the system volume. Thus, portable power sources often use polymer electrolyte fuel cell (PEFC) systems with dead-ended operation—which are simpler and more fuel-efficient than conventional PEFC systems. In these systems, the fuel may be supplied under nonhumidified conditions to minimize the balance of plant (BOP). In recent studies, metal foams have been used as flow fields to improve fuel diffusion and water management in the PEFC; the performance can be compared to that of a conventional channel. This study compared the performance and water management ability of channel and metal foam flow fields under nonhumidified conditions with dead-ended operation. The results demonstrate that the average output was similar for both flow fields. In terms of fuel efficiency, the PEFC with the metal foam could be operated for a significantly longer time without purging than that with the channel.
>> Single cell of PEMFC (polymer electrolyte membrane fuel cell) is composed of bipolar plates, gasket, GDL and the MEA. Bipolar plate's function is the collecting electricity, helping oxygen/hydrogen gas diffuse evenly and draining the water and heat. In this work, we have conducted experiments to low contact resistance and improve the performance of a 25 cm 2 single cell by using metal forms. We have following experimental cases: 1) Conventional graphite serpentine channel bipolar plate; 2) Channel-less bipolar plate with nickel(Ni) based metal foam which coated by various materials. We focused the difference in contact resistance and performance of the single cell with metal foam depending on various coating materials. The experimental results show the similar performance of single cells between with serpentine channel bipolar plates and with channel-less bipolar plate using metal foams.In addition, single cell with metal foam shows potential to higher performance than conventional channel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.