This study presents three feature selection methods for identifying the metabolite features in nuclear magnetic resonance spectra that contribute to the distinction of samples among varying nutritional conditions. Principal component analysis, Fisher discriminant analysis, and Partial Least Square Discriminant Analysis (PLS-DA) were used to calculate the importance of individual metabolite feature in spectra. Moreover, an Orthogonal Signal Correction (OSC) filter was used to eliminate unnecessary variations in spectra. We evaluated the presented methods by comparing the ability of classification based on the features selected by each method. The result showed that the best classification was achieved from an OSC-PLS-DA model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.