Epilepsy is an intractable disease, though many treatment modalities have been developed. Recently, noninvasive transcranial direct current stimulation (tDCS), which can change brain excitability, was introduced and has been applied for therapeutic purposes regarding epilepsy. A suppression of seizures was experienced by cathodal tDCS in a medication refractory pediatric epileptic patient. The patient was an 11-year-old female who had focal cortical dysplasia of the cerebral hemisphere. The patient was treated with antiepileptic drugs but the mean seizure frequency was still eight episodes per month. The tDCS cathode was placed at the midpoint of P4 and T4 in the 10-20 EEG system where the abnormal wave was observed on a sleep EEG. Two mA of tDCS was applied 20 minutes a day, five days a week for two weeks. During a two-month period after treatment termination, only six seizure attacks occurred, and the duration of each seizure episode also decreased. tDCS was applied under the same conditions for another two weeks. For two months after the second treatment session, only one seizure attack occurred, and it showed great improvement compared to the eight seizure attacks per month before the tDCS treatment. The medications were not changed, and there were no notable side effects that were caused by tDCS.
AbstractsBackgroundCerebrolysin is a neuropeptide preparation with neuroprotective and neurorestorative effects. Combining Cerebrolysin treatment with a standardized rehabilitation program may have a potential synergistic effect in the subacute stage of stroke. This study aims to evaluate whether Cerebrolysin provides additional motor recovery on top of rehabilitation therapy in the subacute stroke patients with moderate to severe motor impairment.MethodsThis phase IV trial was designed as a prospective, multicenter, randomized, double-blind, placebo-controlled, parallel-group study. A total of 70 patients (Cerebrolysin n = 35, placebo n = 35) with moderate to severe motor function impairment were included within 7 days after stroke onset and were randomized to receive a 21-day treatment course of either Cerebrolysin or placebo, given in addition to standardized rehabilitation therapy. Assessments were performed at baseline, immediately after treatment as well as 2 and 3 months after stroke onset. The plasticity of motor system was assessed by diffusion tensor imaging and with resting state functional magnetic resonance imaging.ResultsBoth groups demonstrated significant improvement in motor function (p < 0.05); however, no significant difference was found between the two groups. In the stroke patients with severe motor impairment, the Cerebrolysin group exhibited significantly more improvement in motor function compared with the placebo group (p < 0.05). Effects of Cerebrolysin were demonstrated as restricted increments of corticospinal diffusivity and as recovery of the sensorimotor connectivity.ConclusionThe combination of standard rehabilitation therapy with Cerebrolysin treatment in the subacute stroke has shown additional benefit on motor recovery and plastic changes of the corticospinal tract in patients with severe motor impairment.Trial registrationNCT01996761 (November 5, 2013)
To investigate the efficacy of real instrument training in virtual reality (VR) environment for improving upper-extremity and cognitive function after stroke. Design: Single-blind, randomized trial. Setting: Medical center. Participants: Enrolled subjects (NZ31) were first-episode stroke, assessed for a period of 6 months after stroke onset; age between 20 and 85 years; patients with unilateral paralysis and a Fugl-Meyer assessment upper-extremity scale score >18. Interventions: Both groups were trained 30 minutes per day, 3 days a week, for 6 weeks, with the experimental group performing the VR combined real instrument training and the control group performing conventional occupational therapy. Main Outcome Measures: Manual Muscle Test, modified Ashworth scale, Fugl-Meyer upper motor scale, hand grip, Box and Block, 9-Hole Peg Test (9-HPT), Korean Mini-Mental State Examination, and Korean-Montreal Cognitive Assessment. Results: The experimental group showed greater therapeutic effects in a time-dependent manner than the control group, especially on the motor power of wrist extension, spasticity of elbow flexion and wrist extension, and Box and Block Tests. Patients in the experimental group, but not the control group, also showed significant improvements on the lateral, palmar, and tip pinch power, Box and Block, and 9-HPTs from before to immediately after training. Significantly greater improvements in the tip pinch power immediately after training and spasticity of elbow flexion 4 weeks after training completion were noted in the experimental group. Conclusions: VR combined real instrument training was effective at promoting recovery of patients' upper-extremity and cognitive function, and thus may be an innovative translational neurorehabilitation strategy after stroke.
ObjectiveTo examine the synergistic effects of both computer-assisted cognitive rehabilitation (CACR) and transcranial direct current stimulation (tDCS) on cognitive function in patients with stroke.MethodsThe current double-blind, sham-controlled study enrolled a total of 11 patients who were newly diagnosed with stroke. The patients of the tDCS group (n=6) completed sessions of the Korean computer-assisted cognitive rehabilitation program five times a week for 30 minutes a session during a mean period of 18.5 days concomitantly with the anodal tDCS over the bilateral prefrontal cortex combined with the CACR. The patients of the control group (n=5) also completed sessions of the sham stimulation during a mean period of 17.8 days. Anodal tDCS over bilateral prefrontal cortex (F3 and F4 in 10-20 EEG system) was delivered for 30 minutes at an intensity of 2 mA. Cathode electrodes were applied to the non-dominant arm. All the patients were evaluated using the Seoul Computerized Neuropsychological Test (SCNT) and the Korean Mini-Mental State Examination.ResultsMann-Whitney U test revealed a significant difference between the two groups. The patients of the tDCS group achieved a significant improvement in the post/pre ratio of auditory continuous performance test and visual continuous performance test on the SCNT items.ConclusionOur results indicate that the concomitant use of the tDCS with CACR to the prefrontal cortex may provide additional beneficial effects in improving the cognitive dysfunction for patients with stroke.
BackgroundVirtual reality (VR)-based rehabilitation is considered a beneficial therapeutic option for stroke rehabilitation. This pilot study assessed the clinical feasibility of a newly developed VR-based planar motion exercise apparatus (Rapael Smart Board™ [SB]; Neofect Inc., Yong-in, Korea) for the upper extremities as an intervention and assessment tool.MethodsThis single-blinded, randomized, controlled trial included 26 stroke survivors. Patients were randomized to the intervention group (SB group) or control (CON) group. During one session, patients in the SB group completed 30 min of intervention using the SB and an additional 30 min of standard occupational therapy; however, those in the CON group completed the same amount of conventional occupational therapy. The primary outcome was the change in the Fugl–Meyer assessment (FMA) score, and the secondary outcomes were changes in the Wolf motor function test (WMFT) score, active range of motion (AROM) of the proximal upper extremities, modified Barthel index (MBI), and Stroke Impact Scale (SIS) score. A within-group analysis was performed using the Wilcoxon signed-rank test, and a between-group analysis was performed using a repeated measures analysis of covariance. Additionally, correlations between SB assessment data and clinical scale scores were analyzed by repeated measures correlation. Assessments were performed three times (baseline, immediately after intervention, and 1 month after intervention).ResultsAll functional outcome measures (FMA, WMFT, and MBI) showed significant improvements (p < 0.05) in the SB and CON groups. AROM showed greater improvements in the SB group, especially regarding shoulder abduction and internal rotation. There was a significant effect of time × group interactions for the SIS overall score (p = 0.038). Some parameters of the SB assessment, such as the explored area ratio, mean reaching distance, and smoothness, were significantly associated with clinical upper limb functional measurements with moderate correlation coefficients.ConclusionsThe SB was available for improving upper limb function and health-related quality of life and useful for assessing upper limb ability in stroke survivors.Trial registrationThe study was registered with the clinical research information service (CRIS) (KCT0003783, registered 15 April 2019; retrospectively registered).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.