This paper examines whether the Global Vector model is applicable to Korean data as a universal learning algorithm. The main purpose of this study is to compare the global vector model (GloVe) with the word2vec models such as a continuous bag-of-words (CBOW) model and a skip-gram (SG) model. For this purpose, we conducted an experiment by employing an evaluation corpus consisting of 70 target words and 819 pairs of Korean words for word similarities and analogies, respectively. Results of the word similarity task indicated that the Pearson correlation coefficients of 0.3133 as compared with the human judgement in GloVe, 0.2637 in CBOW and 0.2177 in SG. The word analogy task showed that the overall accuracy rate of 67% in semantic and syntactic relations was obtained in GloVe, 66% in CBOW and 57% in SG.
The performance of a long short-term memory (LSTM) recurrent neural network (RNN)-based language model has been improved on language model benchmarks. Although a recurrent layer has been widely used, previous studies showed that an LSTM RNN-based language model (LM) cannot overcome the limitation of the context length. To train LMs on longer sequences, attention mechanism-based models have recently been used. In this paper, we propose a LM using a neural Turing machine (NTM) architecture based on localized content-based addressing (LCA). The NTM architecture is one of the attention-based model. However, the NTM encounters a problem with content-based addressing because all memory addresses need to be accessed for calculating cosine similarities. To address this problem, we propose an LCA method. The LCA method searches for the maximum of all cosine similarities generated from all memory addresses. Next, a specific memory area including the selected memory address is normalized with the softmax function. The LCA method is applied to pre-trained NTM-based LM during the test stage. The proposed architecture is evaluated on Penn Treebank and enwik8 LM tasks. The experimental results indicate that the proposed approach outperforms the previous NTM architecture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.