Harvesting water from humid air via dewing can provide a viable solution to a water shortage problem where liquid-phase water is not available. Here we experimentally quantify the effects of wettability and geometry of the condensation substrate on the water harvest efficiency. Uniformly hydrophilic surfaces are found to exhibit higher rates of water condensation and collection than surfaces with lower wettability. This is in contrast to a fog basking method where the most efficient surface consists of hydrophilic islands surrounded by hydrophobic background. A thin drainage path in the lower portion of the condensation substrate is revealed to greatly enhance the water collection efficiency. The optimal surface conditions found in this work can be used to design a practical device that harvests water as its biological counterpart, a green tree frog, Litoria caerulea , does during the dry season in tropical northern Australia.
A stiff skin forms on surface areas of a flat polydimethylsiloxane (PDMS) upon exposure to focused ion beam (FIB) leading to ordered surface wrinkles. By controlling the FIB fluence and area of exposure of the PDMS, one can create a variety of patterns in the wavelengths in the micrometer to submicrometer range, from simple one-dimensional wrinkles to peculiar and complex hierarchical nested wrinkles. Examination of the chemical composition of the exposed PDMS reveals that the stiff skin resembles amorphous silica. Moreover, upon formation, the stiff skin tends to expand in the direction perpendicular to the direction of ion beam irradiation. The consequent mismatch strain between the stiff skin and the PDMS substrate buckles the skin, forming the wrinkle patterns. The induced strains in the stiff skin are estimated by measuring the surface length in the buckled state. Estimates of the thickness and stiffness of the stiffened surface layer are estimated by using the theory for buckled films on compliant substrates. The method provides an effective and inexpensive technique to create wrinkled hard skin patterns on surfaces of polymers for various applications.focused ion beam surface modification ͉ polydimethylsiloxane ͉ surface wrinkles W rinkle patterns shown in Fig. 1 are formed by exposing the surface area of a flat polydimethylsiloxane (PDMS) sheet (thickness Ϸ3 mm, Young modulus Ϸ2 MPa) (1) to a focused ion beam (FIB) of Ga ϩ ions as shown schematically in Fig. 1 A. This method can create wrinkle patterns of various widths and complexity by controlling the relative motion of the polymeric substrate and the FIB to scan selected areas as shown in Fig. 1 B-E. The wrinkles appear only on the areas of the PDMS exposed to FIB (see Fig. 1 B and C), due to buckling of the stiff skin formed on the areas of the PDMS exposed to FIB. FIB exposure creates a tendency for the skin to expand in the direction perpendicular to the direction of FIB irradiation if it was not constrained by the PDMS substrate, similar to the effect observed in exposing metallic surfaces to ion beam irradiation (2-4). The mismatch strain between the stiff skin and its substrate give rise to skin buckling and the formation of the wrinkle patterns (5-9). FIB exposure differs from UV/ozone treatment of PDMS in that the latter produces a stiff skin by increasing cross-links with relatively little strain mismatch (10, 11). The morphology of the wrinkle patterns on the surface areas of PDMS is mainly a function of ion fluence as shown in Figs. 1C and 2. Fig. 1D shows that the path of the wrinkle patterns can be selected by controlling the relative motion of the substrate and ion beam. In addition, one can create islands of buckled stiff skins on the PDMS by controlling the ion beam spot diameter and spacing (see Fig. 1E).Various morphologies shown in Fig. 2 A are created by a single mode FIB scanning with the beam current of 1 nA and the fluences indicated. When the PDMS substrate is exposed with a fluence on the order of 1 ϫ 10 13 ions per cm 2 , the...
We present the mechanics of folding surface-layer wrinkles on a soft substrate, i.e. inter-touching of neighbouring wrinkle surfaces without forming a cusp. Upon laterally compressing a stiff layer attached on a finite-elastic substrate, certain material nonlinearities trigger a number of bifurcation processes to form multi-mode wrinkle clusters. Some of these clusters eventually develop into folded wrinkles. The first bifurcation of the multi-mode wrinkles is investigated by a perturbation analysis of the surface-layer buckling on a pre-stretched neo-Hookean substrate. The postbuckling equilibrium configurations of the wrinkles are then trailed experimentally and computationally until the wrinkles are folded. The folding process is observed at various stages of wrinkling, by sectioning 20-80 nm thick gold films deposited on a polydimethylsiloxane substrate at a stretch ratio of 2.1. Comparison between the experimental observation and the finite-element analysis shows that the Ogden model deformation of the substrate coupled with asymmetric bending of the film predicts the folding process closely. In contrast, if the bending stiffness of the film is symmetric or the substrate follows the neo-Hookean behaviour, then the wrinkles are hardly folded. The wrinkle folding is applicable to construction of long parallel nano/micro-channels and control of exposing functional surface areas.
Hemiwicking refers to the spreading of a liquid on a rough hydrophilic surface driven by capillarity. Here, we construct scaling laws to predict the velocity of hemiwicking on a rough substrate and experimentally corroborate them with various arrangements and dimensions of micropillar arrays. At the macroscopic scale, where the wetting front appears parallel to the free surface of the reservoir, the wicking distance is shown to grow diffusively, i.e. like $t^{1/2}$ with $t$ being time. We show that our model is consistent with pillar arrays of a wide range of pitch-to-height ratios, either square or skewed. At the microscopic scale, where the meniscus extension from individual pillars at the wetting front is considered, the extension distance begins to grow like $t$ but the spreading slows down to behave like $t^{1/3}$ when the meniscus is far from the pillar. Our microscopic flow modelling allows us to find pillar spacing conditions under which the assumption of densely spaced pillars is valid.
We present a simple two-step method to fabricate dual-scale superhydrophobic surfaces by using replica molding of poly(dimethylsiloxane) (PDMS) micropillars, followed by deposition of a thin, hard coating layer of a SiO(x)-incorporated diamond-like carbon (DLC). The resulting surface consists of microscale PDMS pillars covered by nanoscale wrinkles that are induced by residual compressive stress of the DLC coating and a difference in elastic moduli between DLC and PDMS without any external stretching or thermal contraction on the PDMS substrate. We show that the surface exhibits superhydrophobic properties with a static contact angle over 160 degrees for micropillar spacing ratios (interpillar gap divided by diameter) less than 4. A transition of the wetting angle to approximately 130 degrees occurs for larger spacing ratios, changing the wetting from a Cassie-Cassie state (C(m)-C(n)) to a Wenzel-Cassie state (W(m)-C(n)), where m and n denote micro- and nanoscale roughness, respectively. The robust superhydrophobicity of the Cassie-Cassie state is attributed to stability of the Cassie state on the nanoscale wrinkle structures of the hydrophobic DLC coating, which is further explained by a simple mathematical theory on wetting states with decoupling of nano- and microscale roughness in dual scale structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.